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niter = 150000
fern <− sample(1:4, niter, repl = TRUE, prob = c(.01, .07, .07, .85))
x <− numeric(niter+1); y <− numeric(niter + 1); x[1] <− 0; y[1] <− 0
for(i in 1:niter){x[i + 1] <− 0 * (fern[i]==1) + (0.2 * x[i] − 
0.26 * y[i]) * (fern[i]==2) + (−0.15 * x[i] + 0.28 * y[i]) * 
(fern[i]==3) + (0.85 * x[i] + 0.04 * y[i]) * (fern[i]==4)
y[i + 1] <− 0.16 * y[i] * (fern[i]==1) + (0.23 * x[i] + 
0.22 * y[i] + 1.6) * (fern[i]==2) + (0.26 * x[i] + 0.24
* y[i] + .44) * (fern[i]==3) + (−0.04 * x[i] + 0.85
* y[i] + 1.6) * (fern[i]==4)}
plot(x, y, pch = 17, cex = .3,
axes = F, ann = F)
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Introduction to Statistics

Lab 1 Topics

1. The purpose and importance of statistics

2. Variables and associated terms

3. Statistical inference and its limitations

• Sampling design
• Experimental design

4. Statistical software

The Purpose of Statistics
Unfortunately, many people (including, perhaps, you) are apprehensive about statistics. As a
consequence you may be conditioned to view the topic as irrelevant, tedious, and/or confusing.
This is regrettable. The discipline of statistics plays a vital role in the empirical sciences
(in which knowledge is gained by experience or observation), including biology. Statistics is
important for at least four reasons.

1. The field of statistics objectifies information and decreases bias. When we
make inferences we draw conclusions from available data. The human capacity to
make inferences is impressive but imperfect. We are often fooled by our senses, and are
preconditioned to arrive at particular decisions. Stare at the line intersections in Fig
1.1. Note that although the dots are actually white, it is difficult to determine whether
they are black, white, or gray.
As a physiological example, the perception of danger will often trigger a fight or flight
response in animals. This will cause the autonomic nervous system to signal the body
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to release adrenaline, increase heart rate, hyperventilate, and otherwise prepare for
fighting or fleeing. Recent evidence suggests that the human fight or flight response
may error on the side of caution (Rakison, 2009). That is, we may be hard-wired to see
the world in a slightly paranoid way.
Science attempts to study and describe phenomena objectively (in a way that does
not depend on the investigator). Bias is the tendency or inclination to choose certain
answers and interpretations at the expense of other equal or more valid answers (Aho,
2014). Mathematical tools like statistics can help us to address our tendencies for
non-objectivity that can lead to errors and biases.

Figure 1.1. Are the dots black or white? Figure based on code from Yihui Xie’s R package
animation (Xie et al., 2018).

2. The field of statistics complements biology
In biology, phenomena under study (e.g., deer size, metabolic rates for an enzyme,
paramecium density, etc.) will often vary randomly from one observation to the next.
Statistics allow us to measure this variability and to make valid inferences despite this
variability.
Furthermore, in biological studies it is generally impossible to record all possible
observations. As a result we must rely on statistical methods to make inference to true
processes, using necessarily incomplete information.
Finally, the field of biology uses the scientific method, which requires that we propose
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and test hypotheses. Statistical methods can be used to quantify the amount support
that data provide for and against scientific hypotheses.

3. Statistical knowledge allows you to distinguish information from misinfor-
mation
In today’s world it is increasingly necessary to be able to filter misinformation. Statistics
facilitates this process, allowing you to objectively consider claims. For instance,

• When a nutrition supplier claims that its product causes significant weight loss,
what does this mean, and are the claims valid?

• When a climate scientist claims that the correlation between atmospheric CO2
concentrations and global temperature is greater than 0.95, what does this mean,
and are these claims valid?

4. Statistics will make you rich and famous!
Joking aside, many the jobs currently advertised on the American Statistical Association
jobs website are for biostatisticians. Furthermore, in 2023 the Bureau of Labor Statistics
reported that the annual median pay for statisticians was $104,350 per year (masters
degree required), and anticipated an 11% growth in demand for statisticians from
2023-2033.

Variables and Experimental Units
A variable is simply a measurable phenomenon that varies. Statisticians deal with an
important type of variable called a random variable whose outcomes cannot be known
in advance, and whose propensities must be modeled probabilistically. Consider a fair die
throw (Fig 1.2). Preceding a throw we will not know what the outcome will be: 1, 2, 3, 4, 5
or 6. Nonetheless, we assume that the probability of rolling a one is 1/6. We will explore
probability in Lab 2.

Figure 1.2. Die throw animation. To run, make sure this document is open in an appropriate
PDF reader (e.g., Adobe Reader or Foxit Reader) and click on die image.

Data and Experimental Units
Scientific data consist of outcomes (e.g. measurements, observations) from variables with
respect to experimental units (EUs) or sampling units. Experimental units are often
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called subjects if the EUs are human. It can often be surprisingly difficult to define what the
EUs in a study actual are.

Quantitative, Categorical and Ordinal Variables
Variables can be classified as quantitative, categorical, or ordinal depending on the char-
acteristics of their data. With categorical variables the magnitude of the data has no
quantitative meaning. For instance, a record of whether a deer observed at feeding area is
male or female could be recorded as an“M” (indicating male) or an “F” (indicating female)
or as 1 and 0. Outcomes from both approaches are numerically meaningless, despite the
fact that the second approach distinguishes categories using 1 and 0. Ordinal variables
have data with some quantitative meaning, although it is imprecise. For instance, suppose a
scientist records a qualitative soil water index (from 1 to 10 indicating dry to wet) of sites
she is studying. While this gives us a relative measure of water in the soil (10 is wetter than
1), we don’t have an exact idea of the meaning of outcomes with respect to each other (an
index score of 10 probably does not indicate that the soil is 10 times wetter than a soil with
a score of 1). Outcomes from quantitative variables have a precise quantitative meaning.
For instance, if I record temperatures of 10o and 20o C, I know that the second record is
exactly twice as warm as the first with respect to the baseline 0o C.

Discrete and Continuous Quantitative Variables

Two types of quantitative variables can be distinguished. Discrete quantitative variables
have outcomes that are discontinuous. An example would be counts of mountain goats at a
particular location and time. An outcome from this variable will be a natural integer: 0, 1,
2, etc. Conversely, continuous quantitative variables can be conceptualized as having
no breaks. As a result the ability to distinguish outcomes depends on the resolution of the
measuring device used to gather the data. An example of a continuous variable would be
crop yield measured in kilograms from an agricultural experiment. Within the range of its
support this variable does not have any breaks. That is, any interval bounded by two distinct
outcomes would theoretically contain an infinite number of other distinct outcomes.

Explanatory and Response Variables
Scientists often want to make logical connections between cause and effect; i.e., causality. In
this context we can distinguish two types of variables. The first type is called the explanatory
variable (also called the X -variable, predictor variable, and independent variable). This
variable is generally hypothesized to exert some influence on (cause) a second type of variable,
called the response variable (also called the Y -variable and dependent variable). Biological
examples include:

‚ Parental genotype (X) Ñ Offspring genotype (Y ).

‚ Temperature (X) Ñ Enzymatic activity (Y ).
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‚ Mutagenic agent (X) Ñ Number of mutations. (Y )

If two variables are correlated, then certain outcomes of one variable tend to occur with
certain outcomes of the other variable. For instance, one variable will increase or decrease as
the other variable increases or decreases. Importantly, if two variables are correlated they
may (or may not) be causally associated. That is,

Correlation ‰ Causation

This idiom holds even if we are using terms like response variable and explanatory variable
for the two variables being measured (Fig 1.3).
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Figure 1.3. Association of US suicides by hanging and US spending on science, space, and
technology from 1999-2009. While these variables are correlated, clearly one is not casuing
the other to occur. Data: US Office of Management and Budget, US Centers for Disease
Control and Prevention.
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Sampling and Experimental Design
Recall that with inference we draw conclusions from available data. Statistics is generally
concerned with two sorts of inferences: inference to the population and causal inference.

Inference to the Population
To a statistician, a population is a collection of all possible outcomes from a random variable.
A biological example could be all possible weights from individual Dall’s sheep (Ovis dallii)
in the Wrangell-St. Elias Wilderness in Alaska at one point in time1. We cannot obtain
weight measures of all the sheep: there are too many and they are difficult to capture and
weigh in their native habitat. We can, however, attempt to make inference to the population
of weights.

Causal Inference
With causal inference we are making inference of cause and effect. For instance, that an
explanatory variable, X, is affecting a response variable, Y , in some way.

Sampling Design
Sampling design refers to way experimental units (for instance, individual Dall’s sheep
which will be tranquilized, and then weighed) are selected from a population. Sampling
is necessary because of the general impossibility of observing all possible outcomes from a
variable of interest. For instance, a soil scientist cannot possibly measure soil characteristics
for the entire surface of a mountain range. Instead the researcher selects experimental units
to represent a larger clearly defined population that he or she wishes to make inference to.

Experimental Design
In an experimental design we are concerned with how experimental treatments (for instance,
high and low calorie diets) are assigned to EUs or vice versa.

Inferences Resulting from Sampling and Experimental Designs
Inference to the population and causal inference are constrained by the sampling design and
experimental design of a study, respectively. Of great importance is whether an investigator
incorporates randomization into his/her sampling and experimental designs. Randomization
is “a selection or allocation process that produces outcomes that cannot be known in advance
by the investigator” (Aho, 2014). Random outcomes can be obtained from random number
generators or some other non-deterministic process e.g., die throws (see Fig. 1.2), coin tosses,
etc.

1Note that the statistical definition of a population differs from a conventional biological definition of a
population: a group of interacting individuals from the same species.
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Sampling Design Ñ Inference to the Population

Inference to the population will depend on the sampling design. Inference to the population
is done most effectively by acquiring data from the population using random sampling because
this helps eliminate possible investigator bias. In a Simple random sample the investigator
mixes up (randomizes) the population before selecting EUs. Consider Fig 1.4. Assume that
individual highlighted squares in the grid are 20 EUs that are randomly sampled from a
population of 400 (all squares). To get a new random sample, click on the figure.

Figure 1.4. Simple random sampling animation. To run the animation, make sure this
document is open in an appropriate PDF reader (e.g., Adobe Reader or Foxit Reader) and
click on the image.

Replication is another an important concern in sampling designs. Clearly one must
obtain a sufficient number of independent observations to adequately describe a population.
Independent observations will not be affected by outcomes from other observations. Most
statistical analyses are based on the assumption that sample observations are independent.

The answer to “how many samples is enough?” will depend on the distributional charac-
teristics of the population. If a population is highly variable, then larger sample sizes will be
needed for reliable description. Generally, a sample size of around 30 is considered large.
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Experimental Design Ñ Causal Inference

Causal inferences will depend on the experimental design. We call a scientific investigation
in which a researcher randomly assigns treatments to experimental units a randomized
experiment. Consider a situation where you have ten EUs and you wish to randomly assign
these to two treatments. We make sure that the design is balanced by randomly assigning
exactly five EUs to each treatment (Fig 1.5).

Figure 1.5. Completely randomized design (CRD) animation. A CRD is the simplest
randomized experimental design because constraints like blocking and nesting are not consid-
ered. To run the animation, make sure this document is open in an appropriate PDF reader
(e.g., Adobe Reader or Foxit Reader) and click on the image.

Randomization in experimental studies allows one to make causal inference with respect to
the effect of a treatment because it helps to control confounding variables (those variables
that may impede interpretation of the effect of the explanatory variable). Controlling
confounding variables is easier in a lab setting where one can explicitly hold all other variables
(temperature, humidity, etc.) constant while varying levels in the explanatory variable.

In an observational study, treatments are not randomly assigned to experimental units
although the experimental units may be acquired (sampled) randomly. Many ecological field
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studies are observational because of the sheer impossibility of randomly assigning treatments.
For instance, transporting populations of mountain goats to randomly selected mountains
to ascertain mountain goat effects is unrealistic for most researchers. Causal inference are
generally prevented in observational studies.

Constraints to inference due to experimental and sampling design are summarized in
Table 1.1.

Table 1.1. Summary of statistical inferences permitted by sampling and experimental designs.

Randomized
Experiment

Observational
Study

Random sample Causal inference
to population

Inference
to population

Nonrandom sample Causal inference
to sample

Inference
to sample

R and Excel
We will use two computer programs throughout the semester: Excel and R. Many of you
have already used Excel in other classes (although I will assume initially that you haven’t).
R is much more robust and flexible than Excel, but it is command line based, and will feel
alien for a while. R can be downloaded for free at http://www.r-project.org/.

Excel
We can open Excel by clicking on the appropriate icon in your computer task bar.

To write a function in Excel we first type the equals sign ”=” in a cell. Function names
and arguments (in parentheses, separated by commas) will follow. For instance, I tell Excel
to find the sum of numbers in cells A1 to A3 by supplying between the parentheses the one
argument required by =SUM: a call to the cell addresses.
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To find 332{p4 ˆ 8.3q I type in the code:

The answer, given in scientific notation, is 5.58E+13. This means 5.58 ˆ 1013.

What if I wanted to subtract the contents of cell B1 from cells A1, A2, and A3? Then I
would type the command =(A1-B$1) into cell C1. I could then copy the contents of C1 by
pulling down on the bottom right-hand side of C1 while left-clicking with the mouse. By
pulling the contents of C1 into C2, the command becomes A2-B$1 which equals 10´32 “ ´22.
The cell address with the dollar sign would remain anchored. To anchor an address when
pulling right/left (across columns) put the dollar sign in front of the anchor cell address, e.g.,
$B1. To anchor both up/down and right/left pulls, type dollar signs on both sides of the
column name, e.g., $B$1

R
The R icon is:

Function names for many R operations are similar to Excel although they don’t require
an equals sign. Also like Excel, arguments for R functions follow function names, are enclosed
in parenthesis, and are separated by commas. To find the sum of 1, 2, and 3, I could simply
type 1 + 2 + 3 at the R command line prompt and type Enter.
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1 + 2 + 3

[1] 6

The [1] in the R output means: this is the first requested element. I could also create an
object that contains these values by using the combine function, c, and give it some name,
maybe joe.

joe <- c(1, 2, 3)

The <- command is the assignment operator, and is supposed to be an arrow. It
means that joe contains the stuff to the right of the operator. I could take the sum of joe
by typing:

sum(joe)

[1] 6

Of course we can do all sorts of other things with joe.

log(joe)

[1] 0.0000000 0.6931472 1.0986123

joeˆ2

[1] 1 4 9

To find 332{p4 ˆ 8.3q I type in the code:

3ˆ32/(4 * 8.3)

[1] 5.581386e+13

How do we subtract 32 from 12, 10, and 11?

joe <- c(12, 10, 11)
joe - 32

[1] -20 -22 -21

These R functions, and several others required in Assignment 1, are summarized in the
Appendix to this Lab.
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Assignment 1

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

The purpose of statistics

1. (3 pts) Why is the field of statistics important? Don’t let anyone tell you
differently.

Variables and experimental units

2. (3 pts) Identify which are response and which are explanatory variables in
the examples below.

a) Human body weight; calories in diet.
b) Mean parental phenotype; offspring phenotype
c) Presence or absence of aspirin; rate of myocardial infarction

3. (6 pts) In the table below identify the:

a) Experimental units.
b) Quantitative variable(s). For each identified quantitative variable note

whether it is discrete or continuous.
c) Categorical variable(s).
d) Ordinal variable(s).
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Table 1.2. Table for question 3
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1 15.2 40.3 26 Silty 3000 7
2 14.2 30 22 Silty 2200 7
3 16.2 27.1 21 Silty 2220 6
4 13.1 24.2 20 Clayey 1900 7
5 10.2 20.4 21 Clayey 1850 5
6 15.5 26.6 20 Clayey 1970 5
7 11.1 30.5 25 Sandy 1400 3
8 14.9 24.1 20 Clayey 1900 5
9 12.3 23 13 Sandy 2000 1
10 10.1 15.1 10 Sandy 2200 2

Sampling and experimental design

4. (3 pts) Distinguish the terms “sampling design” and “experimental design.”

5. (6 pts) Are the examples below observational studies or randomized exper-
iments? Explain your answers.

a) A software company wants to compare the effectiveness of computer
animation for teaching cell biology versus a textbook presentation of
the same information. The company tests the biological knowledge
of a group first year college students, and then randomly assigns the
students to one of two groups. One group uses the computer animation
software while the other learns using a conventional textbook. The
company retests all the students using a continuously scaled index and
compares the increase in knowledge of cell biology in the two groups.

b) In an 1898 lecture at Woods Hole, Massachusetts, Herman Bumpus,
a professor of zoology, presented measurements on house sparrows
(Passer domesticus) brought to the anatomical laboratory at Brown
University after a severe winter storm. Some of the birds survived the
storm while others had died. Bumpus measured physical characteristics
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(e.g., humerus length) of the survivors, and the mortalities and drew
comparisons between survivorship and physical characteristics.

c) A researcher is interested in how the weight of gray wolves (Canis lupus)
changes with latitude. She determines the average adult weight from
ten randomly selected packs of wolves situated from northern Alaska to
Southern Canada. She then compares the pack weight to the average
pack latitude.

6. (2 pts) In the context of statistics, what does the word “population” mean?

7. (3 pts) An investigator interested in levels of glycogen in Norway rat
(Rattus norvegicus) livers, gathers data in three different ways. Answer the
questions below related to this research.

a) The researcher obtains a single rat liver, samples it at unusually mottled
spots in the liver surface, and makes glycogen measures. With this data
she can make inference to (choose one):

i) The spots on this single liver.
ii) The entire rat liver.
iii) The livers of all Norway rats.

b) The researcher obtains a single rat liver and samples it at random
locations with replication adequate to describe the variability in the
liver, and measures glycogen. With this data she can make inference to
(choose one):

i) The spots on this single liver.
ii) The entire rat liver.
iii) The livers of all Norway rats.

c) The researcher obtains a random sample of Norway rats with replication
adequate to describe the population of Norway rats. She removes the
liver of each rat, samples each liver at random locations for glycogen
with replication adequate to describe the variability in the livers. With
this data she can make inference to (choose one):

i) The spots on this single liver.
ii) The entire rat liver.
iii) The livers of all Norway rats.
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8. (4 pts) Define the term inference. What are the two types of inference that
statisticians are primarily interested in?

9. (2 pts) How is inference to the population established?

10. (2 pts) Define the term causality.

11. (2 pts) How is causal inference established?

R and Excel

Spreadsheet programs like Microsoft Excel have serious limitations with respect
to how many columns or rows of data they can handle. For instance, Excel
can only handle 256 columns of data. This may seem like a lot, but for many
modern datasets it will be insufficient. For this and other reasons, data are
often not saved directly as .xls files, but as text files with character separators
(e.g., commas, semicolons, etc.). One of the skills you will have to learn in
this course is how to manipulate data and get it in a form you want. This
will often involve handling data in non-.xls file formats.

12. For this question you will graphically examine a dataset that describes
pregnancies occurring from 1960-1967 for women enrolled in the Kaiser
Foundation Health Plan in the San Francisco-East Bay area. Baby birth
weights (in ounces) were recorded along with information pertaining to
whether the mother smoked during her pregnancy. The dataset is in a text
file called birthweight.txt.
Your graphical analysis will use histograms. A histogram is a graph that
depicts the distributional characteristics of dataset (e.g., its spread and
symmetry). A histogram accomplishes this by binning data into categories
and displaying the counts of observations in those categories. Additional
useful information on histograms can be found here.

a) (3 pts) Save the birthweight.txt dataset from the class data directory
onto your workstation.

Open the dataset in Excel. You will need to open the file by searching
for All Files (not just .xls files) in the directory in which you placed
birthweight.txt.
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The format of the birthweight.txt data is: birth weight (in ounces)
and smoker/non-smoker designations (1 = smoker, 0 = non-smoker),
separated by a comma. This is not typical .xls format. Thus, a Text
Import Wizard will open asking you to define the column separator.
Choose Delimited (the default).

Next, choose Comma and choose Finish.
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If you pasted the birthweight.txt data into Excel, you can still use
the comma as a column separator by selecting the column that contains
the data (i.e., column A), and going to: Data ą Text to Columns
ą Delimited ą Comma ą Finish.

Take a screenshot of the resulting spreadsheet and paste it into your
homework with a appropriate caption. Close the birthweight.txt file
without saving your changes.

b) (3 pts) We now examine the birthweight.txt data in R. To bring the
data into R, type (or paste) the following code into R, and then find
the file.

birthweight <- read.csv(file.choose())

The function read.csv allows import of.csv format data (data in which
columns are separated by commas). The birthweight.txt dataset has
this format. The function file.choose allows navigation to a file. To
examine the object birthweight and verify that you brought the data
in correctly, simply type:
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birthweight

Now, type (or paste) the following into R:

smoke <- birthweight[,1][birthweight[,2] == 1]
no.smoke <- birthweight[,1][birthweight[,2] == 0]

This code subsets column 1 (the birth weights) based on outcomes in
column 2 (the smoke/no smoke categorical assignments). See Appendix
1, Section 4 in this lab for more information on logical operators and
Appendix 1, Section 5 for more information on subsetting.

Create histograms in R by typing (or pasting) the following code:

par(mfrow = c(2, 1))
hist(smoke, xlim = c(50, 180), ylim = c(0, 200), xlab =

"Birth weight (oz)", ylab = "Frequency", main = "")
hist(no.smoke, xlim = c(50, 180), ylim = c(0, 200), xlab =

"Birth weight (oz)", ylab = "Frequency", main = "")

The first line of code, par(mfrow = c(2, 1)), creates a graphical
device with 2 rows and one column. It will hold a plot in each of
its rows. The function hist creates histograms. Note that the first
argument in hist calls either the smoke or no.smoke data. The xlim
and ylim arguments define the upper and lower x and y axis limits. We
hold these constant to make the plots for the smoker and non-smoker
groups comparable. See Appendix 1, Section 6 in this lab for more
information on plotting in R.

Right click on the figure and copy it as a metafile or bitmap. Paste the
figure into your homework with an appropriate caption.

c) (3 pts) Histograms bin data into discrete categories. A histogram with
two bins will separate data in to two groups, and so on. The number
of bins will strongly affect histogram interpretations. By default, R
chooses the number of bins based on an approach called Sturges’ formula.
Override this by adding an additional breaks argument, and define the
number of bins to be 20. For instance:
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par(mfrow = c(2, 1))
hist(smoke, xlim = c(50, 180), ylim = c(0, 200), xlab =

"Birth weight (oz)", ylab = "Frequency", main = "",
breaks = 20)

hist(no.smoke, xlim = c(50, 180), ylim = c(0, 200), xlab =
"Birth weight (oz)", ylab = "Frequency", main = "",

breaks = 20)

Right click on the figure and copy it as a metafile or bitmap. Paste the
figure into your homework with an appropriate caption.

d) (2 pts) Briefly contrast the figures in 12b and 12c. How does the altered
binning affect the histograms?

e) (4 pts) Consider the figures in 12b and 12c. What do the histograms
suggest about the effect of maternal smoking on birth weight? Given
what you know about experimental design, is it possible to make
inferences of cause and effect? Why or why not?

13. To understand statistics and perform statistical analyses, you will need to
be able to understand mathematical formulae, and use those formulae in
Excel or R.
In this question you will calculate two important statistics, the sample
mean, X̄,

X̄ “
1
n

n
ÿ

i“1
Xi (1.1)

and the sum of squares,

n
ÿ

i“1
pXi ´ X̄q

2 (1.2)

where Xi represents the ith data outcome, i “ 1, 2, . . . , n. Thus,
řn

i“1 Xi

means: take the sum of Xi outcomes, from i “ 1, 2, . . . , n. In Eq 1.2
the squared differences are calculated first, and the sum of those squared
differences is calculated last. We will discuss the meaning and use of these
statistics in Lab 3.
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a) (4 pts) Calculate Eqs. 1.1 and 1.2 for the soil %N data in Table 1.2
using Excel. Use only the data, the Excel function =SUM, representing
sum, and the operators /, -, and ˆ, representing division, subtraction,
and exponentiation, respectively. Take a screenshot of your work and
paste it into your homework with an appropriate caption.

b) (4 pts) Calculate Eq. 1.1 and 1.2 for the soil %N data in Table 1.2
using R. Use only data objects, the R function sum, representing sum,
and the operators /, -, and ˆ, representing division, subtraction, and
exponentiation, respectively, and the assignment operator, <-. Take
a screenshot of your work and paste it into your homework with an
appropriate caption.

Q1 3pts, Q2 3pts, Q3 6pts, Q4 3 pts, Q5 6pts, Q6 2pts, Q7 3pts, Q8 4pts, Q9 2pts, Q10 2pts, Q11 2pts, Q12
12pts, Q13 8pts. Total pts: 58.
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Appendix: R-code used in this lab

Elementary operators

Operator Operation To find We type
+ addition 2 ` 2 2 + 2
- subtraction 2 ´ 2 2 - 2
* multiplication 2 ˆ 2 2 * 2
/ division 2

3 2/3
ˆ exponentiation 23 2ˆ3

Creating objects
The function c allows one to assign data points to a single object. The operator <- is the
assignment operator. Note that = can be used instead of <-. However we will save = to define
arguments in functions.

Operator Operation To We type

<- assignment operator assign the object y
the name x

x <- y

c combine
place the numbers
1, 2, and 3 into the
object x

x <- c(1, 2, 3)

Data summarization
• For the functions below let x be some collection of data. For instance,

x <- c(1, 2, 3)

Function Operation To find We type

sqrt(x)
?

x
?

2 sqrt(2)

sum(x) summation
řn

i“1 xi sum(x)

exp(1) e “ 2.718282 . . . e exp(1)

exp(x) ex e3 exp(3)

log(x) logepxq logep20q log(20)

log(y,x) logxpyq log10p20q log(20, base = 10)
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Data import
While it is possible to enter data into R at the command line, this will generally be inadvisable
except for small datasets. In general it will be much easier to import data. R can import
data from many different kinds of formats including .txt, and .csv (comma separated) files,
and files with space, tab, and carriage return datum separators. I generally organize my
datasets using Excel or some other spreadsheet program, then save them as .csv files for
import into R.

Operator Operation To We type

read.csv
Read-in ’comma-
separated value’
files

Read in data.csv
from the directory Dir.
Name the resulting
object data

data <-
read.csv("Dir/data.csv")

file.choose
Choose a file
interactively

Navigate to a .csv file
and import the data.
Name the resulting
object data

data <-
read.csv(file.choose())

Boolean (logical) operators

Operator Operation To find We type

== Logical “equals” which elements of
x = y?

x == y

ą greater than which elements of
x ą y?

x > y

ă less than which elements of
x ă y?

x ă y

ą=
greater than
or equal to

which elements of
x ě y?

x ą= y

ă=
less than
or equal to

which elements o
x ď y?

x ă= y
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Subsetting data using []

Operator Operation To find We type
x[y] subset x based on y 2nd outcome from x x[2]

subset x based on
logical outcome in y

outcomes from x ě 2 x[x >= 2]

x[y,]
subset rows of x
based on y

2nd row of x x[2,]

x[,y]
subset columns of x
based on y

2nd column of x x[,2]

Graphs
In this lab we are introduced to R graphs using histograms. The workhorse R function for
plotting is plot, which we will use frequently later in the semester. Plotting function, e.g.,
plot or hist generally have similar arguments including:

• xlab x-axis label.

• ylab y-axis label.

• xlim The upper and lower limits of the x axis, specified as xlim = c(lower, upper).

• ylim The upper and lower limits of the y axis, specified as ylim = c(lower, upper).

The function par, when placed in front of a plotting function, can be used to specify additional
optional graphical operations including multiple plots placed within a single graphical device.

Operator Operation To We type

plot make a plot

make a plot at x
locations defined by x
and y locations
defined by y

plot(x,y)

par graphical parameters

create a graphical device
to hold two graphs
of x and y
configured as two rows
and one column

par(mfrow = c(2,1))
plot(x, y)
plot(x, y)

hist make a histogram make a histogram of
data in x

hist(x)
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2

Probability

Lab 2 Topics

1. Random variables and sets

2. Conceptions of probability

• Frequentist
• Bayesian

3. Probability rules

4. Combinatorial analysis

5. Bayes theorem

Random Variables and Sets
We learned in Lab 1 that a variable is simply a phenomenon that varies. Statistics is concerned
with random variables whose outcomes cannot be known preceding a measurement or trial.
The behavior of random variables must be described using probability. Consider a fair coin
flip (Fig 2.1). Toss outcomes will be unknown preceding a toss. Nonetheless, we assume that
heads will occur for 50% of tosses. That is, the probability of a head = 0.5.
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Figure 2.1. Coin toss animation. To run, make sure this document is open in an appropriate
PDF reader (e.g., Adobe Reader or Foxit Reader) and click on the coin.

Set Theory
Probability is often introduced using notation from from a branch of mathematics called
set theory. A set is simply a collection of distinct objects. Sets can be used to define the
behavior of random variables with a finite number of distinct outcomes. A set is notated
using capital letters, for instance, A, B, etc. Objects comprising sets are listed inside curly
brackets. For instance, A “ t�, �u is a set defining biological genders, where � “ male, and
� “ female. Elements are individual outcomes comprising a set. For the previous example,
� and � are elements of A.

In set theory, a conceptual realization of a random variable is called an experiment, an
iteration of an experiment is a trial, and the observed result of a trial is an outcome or an
event. For instance, we wish to flip a coin once (an experiment), we conduct the experiment
and flip the coin (a trial) and the observed result is a tail (outcome).

The so-called universal set, often denoted S, contains all possible outcomes from an
experiment. Consider an experiment involving two coin tosses. We have:

S “ tHH, HT, TH, TT u.

S can be considered an event that will always occur with probability 1.

Conceptions of Probability
We denote the probability of an event A as: P pAq. But what does this actually mean?
Several conceptualizations of probability have arisen over time. The two most common
are probabilities as the limit of relative frequency over many trials (i.e., frequentist) and
degrees of belief.

Frequentist Paradigm
Under the frequentist interpretation of probability (the kind we will almost always
use in this class) probability is the proportion of times a particular outcome will occur over
an infinite number of trials. For instance, the outcome for the toss of a coin (head or tail)
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cannot be predicted in advance, but there is nonetheless a regular pattern to the long-term
results from an essentially infinite series of coin flips (Fig 2.2). Obviously this view is an
idealization (we can’t flip a coin an infinite number of times) but it is very useful one.

Figure 2.2. Coin toss realizations over many trials. As trials accumulate, the proportion
of head outcomes approaches 0.5. To run the animation, click play while viewing in an
appropriate PDF reader (e.g., Adobe Reader or Foxit Reader).

Degrees of Belief: Bayesian Paradigm
The degrees of belief interpretation of probability is also called the Bayesian inter-
pretation. It describes one’s personal belief that an outcome is true. The degrees of belief
interpretation is useful when making probabilistic statements concerning single events, or
when considering current data in the context of past data.

Consider the statement (Aho, 2014):

“An explosion on the moon documented by Gervase of Canterbury in 1178, was
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probably due to a meteorite impact, resulting in the lunar crater now known as
Giordano Bruno.”

Figure 2.3. Gervase of Canterbury (c. 1141 - c. 1210), an important chronicler of events in
Medieval England.

This outcome is possible but not certain, and so can be considered probablistically. The
crater Giordano Bruno probably formed around 1178. However the advent of the crater is
not an outcome from an infinite frequentist distribution. Because it concerns a single event,
this probabilistic statement requires a degrees of belief interpretation.

Comparison
The frequentist paradigm underlies most statistical methods, including the methods empha-
sized in this class. However, it is an idealization because of the impossibility of observing an
infinite number of trials. The Bayesian paradigm has resulted in useful statistical methods.
However, Bayesian personal probabilities can be subjective which is contrary to the goals of
science. Differences in frequentist and Bayesian perspectives are most important in the context
of inferential statistical procedures, e.g., parameter estimation and hypothesis testing. These
topics will be addressed in upcoming labs, and we will address them using a conventional
frequentist perspective. Bayesian and frequentist conceptual differences are irrelevant to the
mathematical rules of probability described in the next section.

Probability Rules
For any event, A, its probability must be between 0 and 1. That is,

0 ď P pAq ď 1. (2.1)

We call the event that A does not occur A complement and denote it as A1. Because of
the limits set in Eq 2.1, it follows that:

P pA1
q “ 1 ´ P pAq. (2.2)
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Venn diagrams, provide a tool for visualizing sets and their relationships in sample
space. Plots using this approach will generally be delimited by a rectangle, representing the
universal set, S. The rectangle will contain one or more geometric shapes (usually circles)
representing subsets of S. We can represent the probability of an event A with a shape whose
proportional area in S will be equivalent to P pAq.

Example 2.1
Consider a sample space that compares O and B blood types in the U.S. (ignoring the two

other blood type and all Rh possibilities). The probability of encountering an individual with
blood type O, P pOq “ 0.44, whereas the probability of encountering individual with blood
type B, P pBq “ 0.1 (Stanford Blood Center, 2020). A Venn diagram shows these probabilities
within a rectangle of unit area that contains outcomes for all possible blood types, i.e. A, B,
AB, and O for a single individual, although only P pOq and P pBq (probabilities for the blood
types of interest) are shown as circles (Fig 2.4).

library(asbio)
Venn(.44, .1, labA = "O", labB = "B")

P (O ) = 0.44 P (B ) = 0.1

Figure 2.4. Venn Diagram of B and O blood types in the U.S in 2020. The white area in the
diagram encompasses the probability of all blood types other than O and B, i.e., P pO Y Bq1.
The figure was generated using the function Venn in library asbio.

■

Union
If two events are mutually exclusive or disjoint this means that they cannot occur
simultaneously. One cannot get a head and a tail on a single coin flip. Thus, in a one flip
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universe, head and tail outcomes are disjoint. Blood types for a single US citizen are also
disjoint. An individual cannot have two distinct blood types. If events are disjoint, shapes
representing their probabilities will not graphically overlap in a Venn diagram (Fig 2.4).

If, for two events (e.g. A and B), we wanted to know: “What is the probability of A or
B?” we would express this using the set theory notation: P pA Y Bq. The term Y is called
union. We can think of Y as representing the word “or.” If A and B are mutually exclusive,
then:

P pA Y Bq “ P pAq ` P pBq. (2.3)
Given this, what is P pH Y T q in a one coin toss universe?

Intersection
It is easy to imagine a situation where events are not mutually exclusive. For instance, assume
that during a single round of feeding, an herbivore feeds on plant A with a probability of 0.3,
plant B with a probability of 0.3, and plants A and B with a probability of 0.09 (Fig 2.5).

Venn(A = 0.3, B = 0.3, AandB = 0.09)

P (A ) = 0.3 P (B ) = 0.3

P (A∩B ) = 0.09

Figure 2.5. Venn diagram for the herbivore problem posed above. Note that A and B are
not mutually exclusive.

We denote the probability of A and B as P pA X Bq. The term X is called intersect.
We can think of X as meaning “and.” If events are not disjoint, then shapes representing
their probabilities in a Venn diagram will overlap, and this overlap will represent P pA X Bq

(Fig 2.5). Thus, if P pA X Bq ą 0, then A and B are not disjoint.

Even if A and B are not mutually exclusive we still know that:
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P pA Y Bq “ P pAq ` P pBq ´ P pA X Bq. (2.4)
Thus, in the previous example: P pA Y Bq “ 0.3 ` 0.3 ´ 0.09 “ 0.51.

Note that Eq. 2.3 is not invalidated by Eq. 2.4. This is because, if A and B are mutually
exclusive, then P pA X Bq “ 0, and P pA Y Bq “ P pAq ` P pBq ` 0.

Independence
If, when A occurs it does not affect the probability of B occurring, then we say that A and
B are independent. An example would be a head on a fair coin flip, A, and a head on a
second consecutive fair coin flip, B. The probability of getting a head on the second flip will
not be affected by the first outcome. Thus, fair coin flips are independent. If A and B are
independent, then:

P pA X Bq “ P pAqP pBq. (2.5)
Thus, the probability of two consecutive heads in a two coin toss universe is P pH X Hq “

0.5 ¨ 0.5 “ 0.25. Note that here we assume that P pT X Hq “ 0.25 is distinguishable from
P pH X T q “ 0.25.

It is also easy to think of a situation where events are not independent. For instance, let
A be the event that a student (let’s call him Joe) passes a test on Monday. Let B be the
event that Joe passes if he takes the same test on Tuesday. Clearly B is not independent of
A. Joe will almost certainly do better on the test Tuesday if he took the same test Monday.
It is important to note that if two non-zero probability events A and B are disjoint, then
they cannot be independent. This is mathematically true because if A are B disjoint, then
P pA X Bq “ 0, but under independence P pAqP pBq “ P pA X Bq and, given this, we know
that P pA X Bq ą 0 because P pAq and P pBq are both greater than zero.

Conditional Probability
If events A are B not independent, then we will need to use conditional probability to
find their intersection. Specifically, we will need to find the probability of B “given” A or the
probability of A “given” B. We denote the probability of B “given” A as: P pB | Aq. It is
important to note that:

P pA | Bq ‰ P pB | Aq.

For instance, whereas P pspots | measlesq “ 1, P pmeasles | spotsq ‰ 1.

We have the following relationships:

P pB | Aq “
P pA X Bq

P pAq
, (2.6)

P pA | Bq “
P pA X Bq

P pBq
. (2.7)

30



Example 2.2
Let P pAq “ 0.4, P pBq “ 0.5, and P pA X Bq “ 0.1, we have:

P pB | Aq “
0.1
0.4 “ 0.25,

and
P pA | Bq “

0.1
0.5 “ 0.2.

■

Given Eq. 2.6 and Eq 2.7 we have:

P pA X Bq “ P pB X Aq “ P pB | AqP pAq

“ P pA | BqP pBq.
(2.8)

Note Eq. 2.8 that does not invalidate Eq. 2.5. This is because if A and B are independent,
then P pA | Bq “ P pAq and P pB | Aq “ P pBq. Thus, under independence, Eq. 2.8 becomes:
P pB X Aq “ P pA X Bq “ P pBqP pAq “ P pAqP pBq.

Because of the mathematical consequences of non-independence, it is vital for a scientist
to be able to distinguish independent and non-independent events.

Example 2.3
Sudden infant death syndrome (SIDS) causes babies to suddenly die, often with no

explanation. Deaths from SIDS have been reduced by doctor’s recommendations that babies
should be placed on their backs. Little progress, however, has been made in determining the
casual factors behind SIDS.

In England parents were occasionally convicted of murder when more than one SIDS case
occurred in a family. This is because the prosecution claimed that there was only a one in 73
million chance that two children could die from SIDS in the same family. The rationale was
based on the observation that the rate of SIDS in non-smoking families was 1/8500. Given
this perspective, the probability of two deaths would be:

1
8500 ¨

1
8500 “

1
72250000 .

However, the reasoning behind this premise was flawed. The prosecutors had no reason to
believe that SIDS deaths in the same family were independent events. As the Royal Statistical
Society stated:
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“There may well be unknown genetic or environmental factors that predispose
families to SIDS, so that a second case becomes far more likely.”

On this basis the British government decided to review the cases of 258 parents convicted of
murdering their children, and 5,000 cases of children taken away from their parents (Aho,
2014).

■

Cominatorial Analysis
Counting methods are fundamentally tied to probability since they allow determination of
the number of outcomes in a sample space, NpSq. While the enumeration of points in S
will occasionally be straightforward, in many cases it will be extremely difficult, and require
mathematical approaches. This branch of mathematics is called combinatorial analysis

A large number of counting methods are based on a concept called the multiplication
principle, summarized in Theorem 1.

Theorem 1 (Multiplication Principle). If there are n outcomes for each of r trials in an
experiment, then there are nr possible outcomes in the sample space.

Example 2.4
The litter size for domestic dogs (Canis familiaris) generally ranges between 6-10 pups

(Society for the Prevention of Cruelty to Animals (SPCA), 2020). How many different sorts
of litters (combinations of male and female pups) are possible for a litter size of six? How
about a litter size of ten?

We have two possible outcomes for each pup (male or female). Thus, for a litter size of 6
we have 26 “ 64 possible outcomes. For instance, one possibility is three male pups followed
by three female pups. Thus, for a litter size of ten we have 210 “ 1024 possible outcomes.

■

Bayes Theorem
Bayes theorem is a very important conditional probability rule that allows us to find
P pA | Bq from P pB | Aq. Recall that these are not the same. It is very cool and mysterious
these days to say: “I am a Bayesian.”
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Theorem 2 (Bayes Theorem).

P pθ | dataq “
P pdata | θqP pθq

P pdataq
. (2.9)

Proof.
P pA | Bq “

P pA X Bq

P pBq
Eq. 2.7

“
P pB | AqP pAq

P pBq
Eq. 2.8

Bayes theorem (Theorem 2) has four components:

• Likelihood function: P pdata | θq

• Prior probability: P pθq

• Posterior probability: P pθ | dataq

• Total probability or the normalizing constant: P pdataq.

We use Bayes theorem to find posterior probabilities, P pθ | dataq. The priors, P pθq, are
given as personal (potentially subjective) probabilities. This means that interpretation of
the posterior requires a degrees of belief approach. Use of priors is the most contentious
component of Bayes theorem. The likelihood function, P pdata | θq, reflects the form of known
conditional probabilities. The total probability, P pdataq, will have (for our purposes) the
form:

P pdataq “

k
ÿ

i“1
P pdata | θiqP pθiq

Thus, for our purposes, Bayes theorem has the final form:

P pθi | dataq “
P pdata | θiqP pθiq

řk
i“1 P pdata | θiqppθiq

. (2.10)

The events θ1, . . . , θk are called k states of nature. The prior probabilities correspond
to these events.

Example 2.5
A meat inspector must decide if a meat sample contains Escherichia coli using a diagnostic

test. For a perfect diagnostic test, a positive result (POS) would always indicate that E. coli
is present and a negative test result (NEG) would always indicate that no E. coli is absent.
However, as with most diagnostic tests, this test gives false positive and false negative results.
Assessing the diagnostic procedure with 10,000 samples containing E. Coli (EC+) and 10,000
samples without E. coli (EC-) yielded the results shown in Table 2.1.
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Table 2.1. Results of a diagnostic assessment of a test for the presence of E. coli.

E Coli presence/absence
in meat sample

EC+ EC-

Test
Result

POS 9,500 100

NEG 500 9,900

Total 10,000 10,000

From Table 2.1 we have:

• True positive rate = P pPOS | EC+q “ 9, 500{10, 000 “ 0.95

• False positive rate = P pPOS | EC-q “ 100{10, 000 “ 0.01

• True negative rate = P pNEG | EC-q “ 9, 900{10, 000 “ 0.99

• False negative rate = P pNEG | EC+q “ 500{10, 000 “ 0.05

The question of greatest interest is: what is the probability that meat contains E. coli
even if the test is negative? That is, what is P pEC+ | NEGq? This is the probability of a
piece of E. coli meat showing up on your dinner table! We don’t know this, although we do
know the inverted conditional probability, P pNEG | EC+q “ 0.05.

One more step is necessary. We have to provide prior probabilities. In this case the
priors will concern the states of nature for the presence/absence of E. coli in the meat that
the USDA will inspect. Ott et al. (2004) estimated that the proportion of all inspected
US meat that contains E. coli is around 4.5% . Thus, we will let P pEC+q “ 0.045, and
P pEC-q “ 0.955. These are the priors. We have:

P pEC+ | NEGq “
P pNEG | EC+qP pEC+q

P pNEG | EC+qP pEC+q ` P pNEG | EC-qP pEC-q

“
0.05 ¨ 0.045

0.05 ¨ 0.045 ` 0.99 ¨ 0.955
“ 0.002374169

If our priors are right, 0.24% (approximately 2/10 of 1%) of meat that passes inspection,
and is available for consumption, has E. coli. Not too bad, unless of course, you are the
stuck with meat representing the rare 0.24% infected group! We can facilitate the calculation
process (and avoid errors) using R:
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NEG.noEC <- 0.99
NEG.EC <- 0.05
EC <- 0.045
noEC <- 0.955

NEG.EC * EC/(NEG.EC * EC + NEG.noEC * noEC)

[1] 0.002374169

■

Assignment 2

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

Conceptions of Probability

• Open R

• Install the asbio package by typing install.packages("asbio"). The
acronym asbio means Applied Statistics for Biologists.

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio

• Type book.menu() in the R console.

1. (4 pts) Open the coin flip GUI (Graphical User Interface) by going to
Chapter 2 > Coin flips in the asbio book menu. Run the function using
the default values in the GUI.

a) Does the proportion of heads approach 0.5 after 5 coin flips? After 100
flips? After 1000 flips?

b) The convergence of the probability for an event to a single fixed number
given many trials corresponds to which interpretation of probability?
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2. (1 pt) Open the die toss GUI, by going to Chapter 2 > Die throws
in the asbio book menu. Run the function using the defaults (a fair die).
What exact probability will each die toss outcome converge to under the
frequentist paradigm?

3. (2 pts) Provide a definition for the degrees of belief conception of probability.

Probability Rules

4. Open the probability self test GUI by going to Chapter 2 > Self test
questions > Probability in the asbio book menu. Answer questions 1-3.
Nothing needs to be handed in for this question.

5. (8 pts) Open the Venn diagram GUI, by going to Chapter 2 > Venn
diagrams or by simply typing Venn.tck() in the console.

a) Create a Venn diagram representing P pAq “ 0.3, P pBq “ 0.4, P pA X

Bq “ 0. Paste the figure into your homework with an appropriate
caption, e.g., “Venn diagram for question 5.” You will need to copy the
figure as a bitmap to preserve the shading.

b) Are A and B disjoint? Why?
c) Are A and B independent? How do you know this mathematically?
d) Calculate P pA Y Bq.

6. (8 pts) Consider the situation: P pAq “ 0.6, P pBq “ 0.3, P pA X Bq “ 0.3

a) Create a Venn diagram representing the probabilities. Paste the figure
into your homework with an appropriate caption.

b) Are A and B disjoint? Why?
c) Are A and B independent? Why?
d) Calculate P pA Y Bq.

7. (6 pts) Consider the situation: P pAq “ 0.4, P pBq “ 0.3, P pA X Bq “ 0.12

a) Create a Venn diagram representing the probabilities. Paste the figure
into your homework with an appropriate caption.

b) Are A and B disjoint? Why?
c) Are A and B independent? Why?
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8. (8 pts) The probability of finding a particular plant species at habitat
B “ 0.4. The probability of finding the species at habitat A, given the
presence of habitat B “ 0.01. The probability of finding the species at
habitat B given the presence of habitat A “ 0.02.

a) Calculate P pA X Bq.
b) Calculate P pAq.
c) Are habitats A and B probabalistically disjoint? Why?
d) Are A and B independent? Why?

9. (6 pts) Let A and a be alleles for a gene from a population under the
Hardy Weinberg equilibrium. The Hardy Weinberg equilibrium assumes
the independence of alleles at a gene locus. Let P pAq “ p and P paq “ q,
represent the relative frequency of the A and a in the general population,
and hence the probability of those alleles occurring in a random selected
individual.

a) What are the four possible allele combinations for the gene?
b) What is the probability (in terms of p and/or q) of the homozygote

dominant genotype, AA, in the population, i.e., what is P pA X Aq?
c) What is the probability (in terms of p and/or q) of the homozygote

recessive genotype, aa, in the population, i.e., what is P pa X aq?
d) What is the probability (in terms of p and/or q) of the heterozygote

genotype, Aa, in the population, i.e., what is P pA X aq?

10. (12 pts) The approximate litter size for brown spiny field mice (Mus
plantythrix) on dry land sites in India is approximately 4. Assume that
the sex of offspring in litters are independent.

a) How many outcomes are possible in terms of male and female offspring
(see Theorem 1, and the associated Example)?

b) List all the possible outcomes in terms of male and female offspring for
a litter size of four.

c) What is the probability of each outcome?
d) What is the probability of getting exactly three females in a litter of

four?
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e) What is the probability of getting at least one female in a litter of four?
f) What is the probability of getting no females in a litter of four?

11. (6 pts) For the spiny field mice in Q. 10, let A be the event of getting
exactly 2 females, B be the event of getting at least 1 female, and C be
the event of getting no females.

a) What is P pB | Aq? Hint: try to think of this logically without using
math.

b) What is P pA | Cq?
c) Are A and B independent? What about A and C? Defend your answers.

Bayes Theorem

12. (7 pts) Rao et al. (1998) reported on the utility of using computerized
tomography as a diagnostic test for patients with clinically suspected appen-
dicitis. Traditional clinical methods of diagnosis, and diagnosis using the
aid of computerized tomography (CT) were used on 100 patients. Whether
patients actually had appendicitis was determined later by examining the
appendix following an appendectomy. The results are shown in Table
2.2. The 1996 rate of appendicitis (APP+) was approximately 0.00108.
Thus, we will use P pAPP`q “ 0.00108 and P pAPP´q “ 1 ´ 0.00108 as
the priors. Note, a very similar example to this problem is given in the
Bayes Theorem section of this lab.

a) How many states of nature are there for the presence of appendicitis?
b) Determine P pDA | APP`q, P pDA | APP´q, P pNA | APP`q, and

P pNA | APP´q. Note that this does not require use of Bayes theorem.
c) Using Bayes theorem, find the probability that a patient did not have

appendicitis pAPP´q given that the radiological determination was
definite appendicitis (DA). This may be higher than you might think.
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Table 2.2. Results from Rao et al. (1998).

Presence of
appendicitis

APP` APP´

CT determination Definite appendicitis (DA) 50 1

Possible appendicitis (PA) 2 2

No appendicitis (NA) 1 44

Total 53 47

Q1 4pts, Q2 1pt, Q3 2pts, Q4 0pts, Q5 8pts, Q6 8pts, Q7 6pts, Q8 8pts, Q9 6pts, Q10 12pts, Q11 6pts, Q12
7pts. Total pts: 68.
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Appendix: R-code used in this lab

asbio Functions
We will rely on the package asbio for many applications in this course. R-packages are
collections of functions and datasets that can be utilized in the R-environment. Packages
can be installed using the function install.packages. Once a package is installed you
shouldn’t have to install it on a workstation again. An exception will be computers in ISU
lab environments wherein computer memories are scrubbed nightly. Unless a package is part
of the default R download it will need to be loaded using the function library for use in
the current R session. Loading will require that the package has already been installed

Function Operation To We type

install.packages Install package(s) Install package
asbio

install.packages("asbio")

library
Load package(s)
for use in current

work session

Load package
asbio

library(asbio)

book.menu
Open the
the asbio

textbook menu

Open the
book menu

book.menu()

Requires that
asbio is loaded

Venn
Make Venn
diagram

Make a Venn
diagram with
P pAq “ 0.2,

P pBq “ 0.2, and
P pA X Bq “ 0.06

Venn(0.2, 0.2, 0.06)

Requires that
asbio is loaded
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3

Probability Density Functions

Lab 3 Topics

1. Probability distribution terms:

• Probability density function (PDF)
• Cumulative distribution function (CDF)
• Inverse CDF (CDF´1)

2. Discrete PDFs

• Bernoulli distribution
• Binomial distribution
• Poisson distribution

3. Continuous PDFs

• Continuous uniform distribution

Probability Density Functions
It is often possible to express the probabilistic distribution of a quantitative random variable
as a mathematical function. Functions that define probability distributions are called
probability density functions or PDFs. PDFs are mathematically denoted fpxq, and
vary with random variable outcomes, denoted x. The random variable itself is denoted X.
The output generated by the function is called density.

For a discrete random variable density is equivalent to probability. As a result, a discrete

Discrete PDFs are often called probability mass functions, or PMFs.
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PDF has the general form:
fpxq “ P pX “ xq.

For a continuous random variable, the magnitude of a PDF provides insight into patterns
of the relative frequencies for outcomes in X. However, unlike a discrete distribution, it will
not represent P pX “ xq. Integration is theoretically necessary to calculate probability for
a continuous random variable. The probability P pX “ xq is uninformative in a continuous
distribution because the results of integration at any single point on the number line will
always be 0.

Instead, we calculate continuous probability for a range of outcomes. Specifically, let X
be a continuous random variable with PDF fpxq, and let ta, bu P X, where a ă b. To obtain
P pa ď X ď bq, we find:

P pa ď X ď bq “

ż b

a

fpxqdx.

Valid PDFs have two characteristics:

1. fpxq ě 0 for all x.

2. With regard to the densities of cumulative outcomes:

• For discrete random variables,
ř

x
fpxq “ 1.

• For continuous random variables,
ş8

´8
fpxqdx “ 1.

Example 3.1
Imagine that you are an alpine ecologist studying the demographics of mountain goats

(Oreomnos americanus). You observe a certain ridge top for a long period of time and
decide that the probabilities of goat counts in this area can be described by Table 3.1. The
table here serves as a discrete PDF. Nothing would be gained by summarizing this variable
mathematically. The table can also be expressed as a figure (Fig 3.1a). All PDFs (both
discrete and continuous) give the y-axis “height” in a plot of fpxq as a function of x. The
y-axis outcomes of these figures will always represent density. A graph of a discrete PDF will
always look similar to Fig 3.1a: a series of disconnected vertical lines.

Table 3.1. Example of a discrete PDF. Hypothetical mountain goat (Oreomnos americanus)
counts, and their densities. Example taken from Aho (2014)

x = goat count 0 1 2 3 4
fpxq = probability of a particular goat count 0.5 0.3 0.1 0.05 0.05
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Figure 3.1. Table 3.1 re-expressed as a figure: (a) shows the PDF, (b) shows the CDF (see
below). Filled dots indicate that the point is included in the density and/or cumulative
distribution functions. Open dots indicate the point is not included in the CDF.

Because the densities of all outcomes in Table 3.1 are greater than or equal to 0, and
the sum of all the densities equals 1, this appears to be a valid discrete PDF. We note that
density, here is equivalent to probability. This will be true for all discrete PDFs. However, it
will not be true for continuous PDFs.

■

Cumulative distribution function (CDF)
A cumulative distribution function or CDF gives the probability that a random variable,
X is less than or equal to an outcome x. Thus, the CDF gives the lower tail probability.
The CDF is denoted as F pxq. Thus,

F pxq “ P pX ď xq (3.1)

Eq. 3.1 holds for both discrete and continuous random variables. We see that in Table 3.1
and Fig 3.1b, P pX ď 2q “ F p2q “ 0.9.

Inverse CDF
The inverse CDF or quantile function is literally the inverse of the CDF. That is, it gives the
outcome x for an associated lower tailed probability. The inverse CDF is sometimes denoted
as F ´1. Because F p2q “ 0.9 in Table 3.1, F ´1p0.9q “ 2.
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Common probability distributions
Conventional statistical methods use a handful of PDFs with well understood mathematical
properties. Procedures built on these algorithms are called parametric because they use
PDFs with known parametric forms. A parameter for a probability distribution can be
defined as a fixed numeric characteristic of the distribution. Important PDF parameters
include the mean and the variance. An important parameter for many discrete PDFs is the
probability of success (see below). Infinitesimally changing the parameters for any PDF will
result in an infinite number of distinct distributions. We will be introduced to four such
PDFs today: the Bernoulli, binomial, Poisson, and uniform distributions.

Discrete PDFs

Bernoulli distribution

The Bernoulli distribution is arguably the simplest useful discrete PDF. It defines the
probability of a success for a single random binary event, i.e., an event with only two possible
outcomes. For instance, presence/absence, life/death, male/female, head/tail. Either outcome
from any of these examples could be defined as a “success” depending on the focus of an
investigation. If a random variable X follows a Bernoulli distribution, then its PDF has the
form:

fpxq “ px
p1 ´ pq

1´x. (3.2)

• Here x is a Bernoulli outcome. This will be the number of successes for a single binary
trial. Thus, x will be either a 0 or a 1 (0 successes or 1 success).

The Bernoulli distribution has one parameter, p.

• p is the probability of a success, i.e., the probability that X “ 1. Because p is a
probability, 0 ď p ď 1.

Example 3.2
A single coin toss can be considered a Bernoulli random variable. Assuming the coin is

fair, the probability of a single success (a head) is:

fp1q “ 0.51
p1 ´ 0.5q

0
“ 0.5.

The probability of zero successes (a tail) is also 0.5:

fp0q “ 0.50
p1 ´ 0.5q

1
“ 0.5.

The probability of seeing an outcome less than or equal to 1 (of seeing a head or a tail) is:

F p1q “ fp0q ` fp1q “ 0.5 ` 0.5 “ 1.
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To calculate Bernoulli densities (equal to probabilities because this is a discrete distribu-
tion) and lower-tailed (CDF) probabilities in Excel we use the function =BINOM.DIST. The
function actually expresses the binomial distribution, of which the Bernoulli distribution is a
special case (see below). The function =BINOM.DIST requires four arguments:

1. The number of successes, x.

2. The number of trials, n.

3. The probability of a success, p.

4. Whether or not you want the CDF (TRUE) or the PDF (FALSE).

Thus, the probability of getting a head on a single coin flip is:

=BINOM.DIST(1, 1, 0.5, FALSE) = 0.5

The probability of getting a tail on a single coin flip is:

=BINOM.DIST(0, 1, 0.5, FALSE) = 0.5

The probability of seeing an outcome less than or equal to 1 (of seeing a head or a tail) is:

=BINOM.DIST(1, 1, 0.5, TRUE) = 1

Bernoulli densities and lower-tailed probabilities are easily obtained in R. The R-function
for the binomial PDF is dbinom. The d prefix indicates density. The function dbinom requires
three arguments:

1. The number of successes, x.

2. The number of trials, n.

3. The probability of a success, p.

dbinom(1, 1, 0.5) #P(Head)

[1] 0.5

dbinom(0, 1, 0.5) #P(Tail)

[1] 0.5
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The binomial CDF is contained in the function pbinom. The p prefix indicates lower-tailed
probability. The function pbinom has the same three arguments as dbinom.

pbinom(1, 1, 0.5) #P(one or fewer heads)

[1] 1

■

Binomial distribution

The binomial distribution gives the probability for a particular number of successes, x,
given a particular number of independent Bernoulli trials, n. Thus, like the Bernoulli, the
binomial distribution is also used to depict dichotomous variables. If a random variable X
follows a binomial distribution, then its PDF has the form:

fpxq “

ˆ

n

x

˙

px
p1 ´ pq

n´x. (3.3)

• Here x is a binomial outcome. This defines some number of successes across n indepen-
dent Bernoulli trials. Thus, x “ 0, 1, 2, . . . , n.

The binomial PDF has two parameters, n and p.

• n indicates the number of trials.

• p is the probability of a success for each Bernoulli trial. Because p is a probability,
0 ď p ď 1.

The term
`

n
x

˘

is called the binomial coefficeint, and is pronounced “n choose x,”
ˆ

n

x

˙

“
n!

x!pn ´ xq! . (3.4)

where n! “ n ¨ pn ´ 1q ¨ pn ´ 2q ¨ ¨ ¨ 2 ¨ 1 is referred to as n factorial. The binomial coefficient
gives the number of unique success/failure combinations that exist with respect to x successes
and n ´ x failures.

Example 3.3
Last week we painstakingly found that there would be four distinct litters of size four,

with three females. Through trial and error, we found that these were: ����, ����, ����,
and ����. We could have easily found this answer mathematically by using the binomial
coefficient. We have:

ˆ

4
3

˙

“
4!

3!p4 ´ 3q!

“
24

6p1q

“ 4.
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The R functions for factorial and the binomial coefficient are factorial and choose,
respectively.

factorial(4)/(factorial(3) * factorial(1))

[1] 4

choose(4,3)

[1] 4

■

A PDF is generally denoted with a short acronym for its name, followed by its required
parameters, given inside parentheses. A binomial distribution has two parameters, n and p.
Thus, if a random random variable, X follows a binomial distribution this is summarized:
X „ BINpn, pq. The symbol „ means “follows” or “follows in distribution.” The distribution
BINpn “ 10, p “ 0.5q is shown in Fig. 3.2.
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Figure 3.2. The PDF and CDF of the distribution BINp10, 0.5q. Filled dots indicate that
the point is included in the density and/or cumulative distribution functions. Open dots
indicate the point is not included in the CDF.

If n “ 1, then there will only be two possible outcome for x, zero successes and one
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success, and in this case,
`

n
x

˘

becomes
ˆ

1
1

˙

“

ˆ

1
0

˙

“ 1.

Thus, if n “ 1, then Eq 3.3 becomes Eq 3.2. Because of this, the Bernoulli is a special
case of the binomial distribution. Specifically, it is the binomial distribution when n “ 1.
As a result, if a random variable X follows a Bernoulli distribution, this can be written as
X „ BINp1, pq.

Example 3.4
To calculate the binomial probability of obtaining three females in a litter size of four, we

need to define the binomial parameters for our particular problem. Because we have n “ 4
(the total number of offspring) and p “ 0.5 (we assume the probability of obtaining a male or
a female equals 0.5), we have X „ BINp4, 0.5q. Our outcome of interest is x “ 3. Thus, we
have:

fpxq “

ˆ

n

x

˙

px
p1 ´ pq

n´x

P pX “ 3q “ fp3q “

ˆ

4
3

˙

0.530.54´3

“ 4p0.54
q

“ 4p0.0625q

“ 0.25.

This is because:
ˆ

1
0

˙

“
1!

0!p1 ´ 0q! “
1

1p1q
“

ˆ

1
1

˙

“
1!

1!p1 ´ 1q! “
1

1p1q
“ 1.

The proof that 0! = 1 is very interesting. By definition:

x! “ x ¨ px ´ 1q ¨ px ´ 2q ¨ 3 ¨ 2 ¨ 1.

Manipulating our definition for x!, we have:

x! “ x ¨ px ´ 1q!

px ´ 1q! “
x!
x

.

Substituting x “ 1 to obtain 0!, we have:

p1 ´ 1q! “
1!
1

0! “
1
1 “ 1.
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The Bernoulli distribution is a special case of the binomial distribution. Thus, to calculate
binomial probabilities in Excel we again use the function =BINOM.DIST. Thus, for our current
example we have:

=BINOM.DIST(3, 4, 0.5, FALSE) = 0.25

In R we have

dbinom(3, 4, 0.5)

[1] 0.25

■

Poisson distribution

Like the Bernoulli and binomial distributions, the Poisson distribution describes probability
for some number of successes, x. Unlike the Bernoulli and binomial PDFs, however, there is
no designated upper limit (at n) for the number of successes. If a random variable X follows
a Poisson distribution, then its PDF is:

fpxq “
e´λλx

x! . (3.5)

• Here x is a Poisson outcome, x “ 0, 1, 2, . . ., and e represents Euler’s number, e “

2.71828....

The Poisson PDF has one parameter, λ.

• λ describes the rate of successful outcomes (e.g., the number of organisms encountered
per unit time). By definition, λ ą 0.

The Poisson is a unique distribution in that its mean will always equal its variance, and
both of those parameters will be equal to its lone parameter, λ. If a random variable, X,
follows a Poisson distribution this is denoted X „ POIpλq. The distribution POIp5q is
shown in Fig. 3.3.

Recall that e is the base of natural logarithms. It turns that e can be calculated as the sum of the infinite
series:

e “

8
ÿ

n“0

1
n! “ 1 `

1
1 `

1
2 ¨ 1 `

1
3 ¨ 2 ¨ 1 ` ¨ ¨ ¨
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Figure 3.3. The PDF and CDF of the distribution POIp5q. Filled dots indicate that the
point is included in the density and/or cumulative distribution functions. Open dots indicate
the point is not included in the CDF.

Because of its properties, the Poisson distribution is most often used by biologists to
represent spatial or temporal randomness of counts in space or time. We can gauge whether
data come from a Poisson distribution by comparing the sample mean and the sample variance
of the data. If these are approximately equal, this indicates that the data likely come from a
Poisson distribution, and are thus randomly distributed in space or time. The equation for
the sample mean was given in Eq. 1 in Lab 1. The sample variance is the sum of squares
(Eq. 2 in Lab 1) divided by n ´ 1. We will discuss the sample mean and variance in greater
detail in Lab 4.

Example 3.5
Assume that bald eagle sightings in Last Chance, Idaho, are Poisson distributed with a

rate of 0.2/hr. What is the probability of seeing three eagles in an hour? We have:

fpxq “
e´λλx

x!

P pX “ 3q “ fp3q “
e´0.20.23

3!
“ 0.00109.

To calculate Poisson densities (and lower tailed probabilities) in Excel we use the function
=POISSON.DIST. The function requires three arguments.
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1. The number of successes, x.

2. The rate, λ.

3. Whether or not you want the CDF (TRUE) or the PDF (FALSE).

For the current example we have:

=POISSON.DIST(3, 0.2, FALSE) = 0.00109

To calculate Poisson densities in R, we use the function dpois. The function requires
two arguments.

1. The number of successes, x.

2. The rate, λ.

For the current example we have:

dpois(3, 0.2)

[1] 0.001091641

■

Continuous PDFs

Continuous uniform distribution

The simplest continuous distribution is the continuous uniform distribution. It is often
used as a näıve model to represent processes in which all possible continuous outcomes have
the same likelihood. If a random variable, X, follows a continuous uniform distribution then
it will have the PDF:

fpxq “
1

b ´ a
. (3.6)

The continuous uniform PDF has two parameters.

• a is the lower limit of the support for X (minimum possible value of X).

• b is the upper limit (maximum possible value of X).
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Note that because density will be equal for all possible outcomes, and will depend only
on the limits of the distribution, x is not required in the density function. By definition,
a ď x ď b.

If a random variable X follows a continuous uniform distribution, we denote this as
X „ UNIF pa, bq. The distribution UNIF p2.5, 3q is shown in Fig 3.4.
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Figure 3.4. The PDF and CDF of the distribution UNIF p2.5, 3q.

Example 3.6
Unlike a discrete distribution, continuous PDFs do not directly provide probability. In-

stead, we have to find an area beneath a PDF corresponding to a range of defined outcomes
in the PDF. We do this by integrating the PDF.

Let X „ UNIF p2.5, 3.0q (see Fig 3.4). Then, to find P p2.5 ď X ď 2.8q, we have:

P p2.5 ď X ď 2.8q “

ż 2.8

2.5

1
3 ´ 2.5dx

“

ż 2.8

2.5
2dx

“ 2x
ˇ

ˇ

2.8
2.5

“ 2p2.8q ´ 2p2.5q

“ 0.6.

The integration here is extremely straightforward because we are finding the area under a
rectangle (Fig 3.4). Thus, to find the probability we could have found the difference of the x
outcome of interest, and lower bound of the PDF (2.8 ´ 2.5 “ 0.3) and multiplied this by the
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lone density of the PDF, 2. That is, P p2.5 ď X ď 2.8q “ 0.3¨2 “ 0.6. Calculating probabilities
using integration, however, will work for all continuous PDFs, including non-rectangular
ones.

Excel does not have a function for the continuous uniform distribution. R, however, allows us
to integrate the continuous uniform PDF, dunif. For the current example we have:

integrate(function(x) dunif(x, min = 2.5, max = 3.0),
lower = 2.5, upper = 2.8)

0.6 with absolute error < 6.7e-15

We can also use the uniform CDF, punif, directly

punif(2.8, min = 2.5, max = 3.0)

[1] 0.6

Assignment 3

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

PDFs and CDFs

1. (2 pts) Provide a definition for the term “probability density function”
(PDF).

2. (2 pts) Provide a definition for the term “cumulative distribution function”
(CDF).

3. (6 pts) Let X be a discrete random variable whose distribution is described
by the function fpxq “ x{8, if x “ 1, 2, or 5, and fpxq “ 0 otherwise.
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a) Make a table similar to Table 3.1 to represent the problem. Include
this in your homework with an appropriate caption.

b) What is P pX “ 3q? That is, what is fp3q?
c) What is P pX “ 2q? That is, what is fp2q?
d) What is P pX ď 2q? That is, what is F p2q?

Binomial distribution

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

4. (9 pts) To see a depiction of the binomial distribution go to Chapter 3
> Pdf depiction. Select Binomial and uncheck the Show cdf widget.
Mac users, type: see.bin.tck() to access the GUI directly. Answer the
following questions.

a) Is this distribution used to represent continuous or discrete random
variables? Do you know this just by looking at the graph? Why?

b) How many parameters does the distribution have?
c) What does x on the x-axis represent?
d) What does fpxq on the y-axis represent?

5. (5 pts) Alter the binomial distribution parameters in the binomial distribu-
tion GUI to create a Bernoulli distribution. Attach the resulting figure to
your homework. Is the Bernoulli a special case of the binomial? Why?

6. (10 pts) You are working on a mark-recapture study of boreal toads, (Bufo
boreas). You predict that there is a 60% chance of capturing a marked
toad for each of 30 traps that you establish.

a) Define the binomial distribution represented by the problem. What are
the parameter values for n and p? What is the x outcome of interest?

b) Use the binomial PDF to determine the probability that exactly 22
toads will be found in the 30 traps?
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i) First, calculate the probability “by hand” using Excel or R to
help. I recommend that you use R as this will facilitate later steps.
Show your work by attaching screen shots.
• If you use Excel, you are allowed to use the function =FACT,

which provides factorials, along with the basic mathematical
operators for summation, subtraction, multiplication, and ex-
ponentiation.

• If you use R (recommended) you can use the function choose(n,
x), which gives

`

n
x

˘

directly, along with the basic mathemati-
cal operators for summation, subtraction, multiplication, and
exponentiation.

ii) Confirm your calculation in (i) using =BINOMDIST (Excel), or
dbinom (R). Show your work by attaching screen shots.

c) What is the probability that four or fewer toads will be found in the 30
traps?

i) First, calculate the probability “by hand” using Excel or R (rec-
ommended) applying the constraints mentioned above. Show your
work by attaching screen shots.

ii) Confirm your calculation using =BINOMDIST (Excel), or pbinom
(R). Show your work by attaching screen shots.

7. (1 pt) Use the binomial coefficient (Eq. 3.4) to calculate the total number
of ways that 20 heads can occur in 50 coin tosses. Use R or Excel functions
to help. Show work using snapshots.

Poisson distribution

8. (8 pts) To see a depiction of the Poisson distribution go to Chapter 3
>Pdf depiction in the asbio book.menu. Select Poisson and uncheck
the Show cdf widget. Mac users, type: see.pois.tck() to access the
GUI directly. Answer the following questions.

a) Is this distribution used to represent continuous or discrete random
variables? Can you determine this by simply looking at the graph?
Why?

b) How many parameters does the distribution have?
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c) What does x on the X-axis represent?
d) What do fpxq on the y-axis represent?

9. (15 pts) As noted earlier, the Poisson distribution is often used by biologists
to quantify the randomness of organism counts in time and space. The
following rules utilize the sample mean and sample variance (see the section
describing the Poisson distribution in the this lab). We will explore the
sample mean and variance with greater emphasis next week.

• random: counts occur at frequencies approximating the Poisson distri-
bution (i.e. the sample variance equals the sample mean). Remember,
in a Poisson distribution the variance will equal the mean, and both
will equal the rate parameter, λ.

• clumped: The sample variance is greater than the sample mean. This
usually indicates some sort of positive interaction between individuals
(e.g., social insects), dispersal limitations, or patchiness of resources.

• regular: The sample variance is less than the mean. This is often
interpreted as a negative or competitive interaction between individual
organisms.

Clumped, random and regular spatial distributions are shown in Fig 3.5.

Figure 3.5. Potential spatial distributions of organisms: (a) clumped, (b) random, (c) regular.

You are studying a population of Trigona dorsalis, stingless bees that nest
in trees in tropical dry forests. Hubbell & Johnson (1978) found that nests
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of the bees were randomly (Poisson) distributed in space. You wish to test
if the nests in your study area are randomly distributed in space, or if there
is evidence of territoriality (i.e., a repulsed (clumped) distribution). To test
whether nests are random (Poisson) distributed, regular, or clumped, you
lay out a regular grid of 25 equal-sized quadrats in Southeastern Venezuela
dry-forest and count the nests in each quadrat. We will only use Excel for
this Exercise. You should utilize the Excel spreadsheet provided for this
question in the lab.

a) Use the function =AVERAGE in Excel to calculate the mean rate of
counts based on your observed data. Calculate this value in the cell
reserved for λ, B27, on your Excel spreadsheet (see Fig 3.6). We will
use this sample mean as an estimate the Poisson distribution rate.

b) Assuming a Poisson distribution with the sample mean, 1.88, as the
parameter value for λ, calculate the expected probability of the of
occurrence 0 nests, 1 nests, 2 nests, up to the maximum number of
nests observed in a quadrat, 5. This will require use of the function
=POISSON.DIST. Multiply the resulting probabilities by 25 to get the
expected counts of each number of nests, given 25 quadrats. Calculate
these values in cells E2:E7 (see Fig 3.6).

c) Plot a histogram comparing the observed and expected frequencies.
• First, create a histogram showing frequencies of quadrats versus

number of nests in a quadrat (e.g., 0, 1, 2, 3 ,4, and 5). This will
require the Excel Data Analysis plug-in. Click on Data in the
Excel pulldown menu. Does the Data Analysis toolbar show up
on the right-side of the menu? If not, contact me.
– Go to Histogram in the Data Analysis toolbar
– In the Input Range put the observed number of nests (B2:B26).
– In the Bin Range put the nest count categories (C2:C7)
– Click on Output Range and put in some address on the work-

sheet
– Click on Chart Output (see Fig 3.6).
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Figure 3.6. Creating a histogram of the observed number of Trigona dorsalis nests counts in
Q 9.

– Go to Design
– Click on Select Data and click on Add in the Select Data

Source dialog box.em Click on Select Data and click on Add
in the Select Data Source dialog box.

– Under Series values, insert the expected values you have calcu-
lated in cells E2:E7(Fig 3.7).

• Finally, insert the resulting histogram to the homework you will
turn in. Make sure it is formatted to meet the course specifications.

58



Figure 3.7. Edit Series dialog box in Excel.

d) Based on your figure, do Trigona nests in Venezuela appear to be
clumped, regularly, or randomly distributed in space? Why?

e) Calculate the sample variance of the count data, i.e., cells B2:B26,
using the Excel function =VAR. Compare the variance to the mean you
calculated earlier, 1.88 nests, in support of your graphical analysis.

Continuous uniform distribution

10. (4 pts) To see a depiction of the continuous uniform distribution go to
Chapter 3 >Pdf in the asbio book.menu. Select Uniform and uncheck
the Show cdf widget. Mac users, type: see.unif.tck() to access the
GUI directly. Answer the following questions.

a) How many parameters does the distribution have?
b) Is this a continuous distribution? Is it more difficult to calculate

probability for continuous distributions? Why?

11. (8 pts) Assume X „ UNIF p1, 5.5q.

a) Calculate P p1 ď X ď 5.5q using calculus.
b) Verify your work in R.
c) Does your result make sense in the context of what you know about

valid PDFs (see page 2 in this lab)? Why?
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Q1 2pts, Q2 2pts, Q3 6pts, Q4 9pts, Q5 5pts, Q6 10pts, Q7 1pt, Q8 8pts, Q9 15pts, Q10 4pts, Q11 8pts.
Total pts: 70.
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Appendix: R-code used in this lab
Here are R functions for PDFs we will use this semester.

Name Specification Cont. or
Discrete

R function Parameter arguments

Binomial BINpn, pq D dbinom(x, size, prob) n = size, p = prob
Chi-squared χ2pνq C dchisq(x, df) ν = df
F F pν1, ν2q C df(x, df1, df2) ν1 = df1, ν2 = df2
Normal Npµ, σ2q C dnorm(x, mean, sd) µ = mean, σ = sd
Poisson POIpλq D dpois(x, lambda) λ = lambda
t tpνq C dt(x, df) ν = df
Uniform UNIF pa, bq C dunif(x, min, max) a = min, b = max
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4

Parameters and Statistics

Lab 4 Topics

1. Universal PDF Parameters

• EpXq

• V arpXq

2. Parameter Estimators

• Location estimators: X̄, Median
• Scale estimators: S2, S, IQR

• Skewness and Kurtosis estimators: G1, G2

3. The effect of linear transformation on parameters and statistics

Parameters
A parameter is a fixed numeric characteristic describing an entire statistical population.
Recall that a statistical population is a collection of all possible outcomes from a random
variable.

EpXq

The expected value of X is a parameter denoted EpXq. EpXq represents the arithmetic
mean (see next section) of an entire population of outcomes. For a probability density
function, fpxq, defining a discrete random variable X, the expected value of X is:
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EpXq “
ÿ

x

xfpxq. (4.1)

Recall that fpxq means density, and will be equivalent to probability for discrete random
variables (see Lab 3). Recall also that x represents an individual outcome from a random
variable X. Higher order expectations can also be calculated using the approach given in Eq.
4.1. For example, to calculate EpX2q and EpX3q for a discrete random variable X, we would
use:

EpX2
q “

ÿ

x

x2fpxq,

EpX3
q “

ÿ

x

x3fpxq,

etc.

(4.2)

V arpXq

Another important parameter is the variance of X, denoted as V arpXq. This parameter
quantifies the variability or the amount of “spread” in a distribution. For any discrete or
continuous random variable X, the variance of X, is:

V arpXq “ EpX2
q ´ EpXq

2. (4.3)

The standard deviation of X is the positive square root of the variance of X. That is:

SDpXq “
a

V arpXq. (4.4)

Example 4.1
Consider the PDF introduced in Lab 3 describing mountain goat (Oreomnos americanus)

counts in an alpine meadow (Table 4.1).

Table 4.1. Example of a discrete PDF. Hypothetical mountain goat (Oreomnos americanus)
counts, and their densities. Example taken from Aho (2014).

x = goat count 0 1 2 3 4
fpxq = probability of a particular goat count 0.5 0.3 0.1 0.05 0.05

We have:

EpXq “
ÿ

xfpxq “ 0p0.5q ` 1p0.3q ` 2p0.1q ` 3p0.05q ` 4p0.05q “ 0.85,

EpX2
q “

ÿ

x2fpxq “ 0p0.5q ` 1p0.3q ` 4p0.1q ` 9p0.05q ` 16p0.05q “ 1.95.

Thus,
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V arpXq “ EpX2
q ´ EpXq

2
“ 1.95 ´ 0.852

“ 1.2275,

and

SDpXq “
a

V arpXq “ 1.1079.

■

Going out two standard deviations from the mean in either direction on the number line
will always create an interval that contains at least 75% of the population for any distribution
(binomial, uniform, etc.). In a normal population distribution (introduced in lab 5), an
interval ˘ two standard deviations from the mean will contain approximately 95% of the
population. This normal distribution pattern is called the empirical rule.

Estimators
In general, we will be unable to observe all possible outcomes of a phenomenon we are
interested in. Indeed, if we did we would not need statistics, at least not in an inferential
capacity. We use estimating algorithms, i.e., estimators, to obtain estimates of population
parameters. Individual estimates are called statistics. Thus, while we call the topic we are
studying statistics, we also use this term for numerical summaries from samples. Through
the use of statistics we attempt to describe an entire population using only sample data (Fig.
4.1). Occasionally our statistics will describe a clearly finite population (e.g., all students in
BIOL 3316). If we have sampled this entire population, then statistics serve a descriptive
instead of an inferential role. Specifically, they will define the behavior of the population
instead of merely estimating it.

The usefulness of an estimator can be judged in three ways.

1. Lack of bias: If an estimator is unbiased then it will tend to neither over nor
underestimate the parameter.

2. Consistency: If estimator is consistent then as the sample size increases, the precision
of the estimator for a parameter increases.

3. Efficiency: If an estimator is efficient then it will provide a more precise (less variable)
estimate of the parameter then other estimators for a particular sample size.

The can be shown using a mathematical construct called Chebyshev’s inequality.
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Figure 4.1. The process of making inference to a population (large white circle) using
representative samples (smaller gray circle). In statistical analyses we often do this by
calculaing sample statistics to estimate population parameters.

There are three types of point estimators (estimators that estimate a single value).

1. Measures of location estimate a typical or central value.

• Examples include the sample mean, sample median and sample mode.

2. Measures of scale quantify data variability.

• Examples include the sample variance, sample standard deviation and sample
interquartile range.

3. Measures that quantify the shape of the data distribution.

• Examples include the sample skew and sample kurtosis.

Sample Mean
We estimate EpXq, i.e., Eq. 4.1, using the arithmetic mean, also simply called the sample
mean. The estimator is denoted X̄, and pronounced “X bar.” The sample mean will be
unbiased and consistent for EpXq for any distribution, and will be a maximally efficient
estimator for EpXq when the distribution underlying the data is normal.

X̄ “

řn
i“1 Xi

n
(4.5)

Conventionally capital letters are used for an estimator. For instance, X̄ “ 1
n

řn
i“1 Xi. Conversely, lower

case letters are used for a particular estimate, based on data. For instance, if data outcomes, x, are 6, 2 and
1, then x̄ “ 3.
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Sample Variance
We estimate V arpXq, i.e., Eq. 4.3, using the sample variance, denoted S2. The sample
variance is an unbiased and consistent estimator for V arpXq for any distribution.

S2
“

řn
i“1pXi ´ X̄q2

n ´ 1 (4.6)

As we learned in Lab 1, the numerator in Eq. 4.6 is called the sum of squares. The
denominator, n ´ 1, represents the degrees of freedom, i.e., the number of independent
pieces of information we have to estimate the true variance. In the case that the entire
population is sampled we would calculate the population variance by dividing by n instead of
n ´ 1.

We estimate SDpXq using the sample standard deviation, denoted S.

S “
?

S2 (4.7)
S is biased (low), but is consistent for SDpXq. S allows increased interpretability,

compared to S2. The units of S will be in the units of the original observations. Conversely,
the units of S2 will be the original units of measurement, squared. S also allows inferences
using the empirical rule (Lab 5).

Example 4.2
As an example, assume that we don’t know everything about the mountain goat count

probability distribution for a meadow shown in Table 4.1, and that we need to rely on data
(and statistics) to describe the distribution. We sample the meadow independently 15 times
and get the following goat counts: 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1.

We have:

x̄ “
1 ` 0 ` 0 ` 0 ` 1 ` 0 ` 0 ` 2 ` 0 ` 0 ` 0 ` 1 ` 0 ` 2 ` 1

15 “
8
15 “ 0.533.

s2
“

p1 ´ 0.533q2 ` p0 ´ 0.533q2 ` p0 ´ 0.533q2 ` . . . ` p1 ´ 0.533q2

14 “
7.733

14 “ 0.552.

s “
?

s2 “ 0.743.

The Excel function function for the sample mean, sample variance and sample standard
deviation are =AVERAGE, =VAR, and =STDEV. The latter two functions are equivalent
to the functions =VAR.S and =STDEV.S, respectively. Thus, for the data above we could
calculate the sample variance using the approach shown in Fig 4.2:
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Figure 4.2. Calculating the sample variance in Excel.

The R functions for the sample mean, sample variance, and sample standard deviation
are mean, var and sd, respectively. Thus, we could do something like:

goats <- goats <- c(1,0,0,0,1,0,0,2,0,0,0,1,0,2,1)
mean(goats)

[1] 0.5333333

var(goats)

[1] 0.552381

sd(goats)

[1] 0.7432234

■
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Robust Estimators
Oftentimes data will contain outliers (unusual observations) that will negatively affect valid
inferences. The mean, and measures that rely on the mean (i.e., the variance and standard
deviation), are not resistant. That is, these statistics will be strongly affected by outliers.
Robust measures of location and scale (those resistant to outliers) include the sample
median and the interquartile range, respectively.

Sample Median
The population median is the 50th percentile of its PDF. That is, 50% of a distribution
will lie below and above its median. The sample median is the middle value from a set of
n ordered responses (i.e., data arranged from low to high). If n is odd then the median is the
middle response from a set of ordered data. If n is even, then the median is the average of
the two middle ordered values. The median is only 64% as efficient as the arithmetic mean.
That is, median estimates will vary more than mean estimates, when sampling from the same
normal population (see Lab 5). However, X̄ has a breakdown point of 0% because it can
be made arbitrarily large with a single outlier. The same effect to the median would require
that 50% of data were outliers. Thus, the median has a break down point of 50%.

Example 4.3
Consider nine counts of medium ground finches (Geospiza fortis) taken at Daphne Major

Island in the Galapagos from 1976 to 1984 (Table 4.2).

Table 4.2. Medium ground finch (Geospiza fortis) counts from Daphne Major. Data from
Gibbs & Grant (1987).

Year Finch Count
1976 1220
1977 400
1978 380
1979 298
1980 280
1981 200
1982 297
1983 280
1984 1250

We first order the data from smallest to largest. The ordered data are:

200, 280, 280, 297, 298, 380, 400, 1220, 1250

Next, we find the middle of the data. This will be the pn ` 1q{2 value. Because n “ 9, we
have:

p9 ` 1q{2 “ 5.
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The fifth ordered value is 298. Thus, the sample median is 298.

The Excel function function for the sample median is =MEDIAN, so we could calculate
sample median using the approach shown in Fig 4.3.

Figure 4.3. Calculating the sample median in Excel.

The R function for the median is median:
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finches <- c(1220,400,380,298,280,200,297,280,1250)
median(finches)

[1] 298

# Note, sorting by hand we have:
sorted.finches <- sort(finches)
sorted.finches

[1] 200 280 280 297 298 380 400 1220 1250

n <- length(finches)
(n - 1)/2

[1] 4

# The fifth obs. is 298
sorted.finches[5]

[1] 298

■

The mean and the median can be contrasted by the fact that the median is the central
value in an ordered distribution, while the mean is the “center of gravity” for the distribution.
Note that to “balance” the distribution in Fig. 4.4, the mean is pulled in the direction of the
long right tail.
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Figure 4.4. Comparison of the mean and the median for a right skewed distribution.

Sample IQR
Because they are calculated from squared deviations, S and S2 are even more strongly affected
by outliers than the sample mean. Although, like the mean, each has a breakdown point of
0%. A robust estimator of scale is the sample interquartile range (IQR).

For any probability distribution, the region between the 1st quartile and 3rd quartile
contains the middle 50% of a distribution. One quarter of the distribution will be below the
1st quartile and one quarter of the distribution will be above the third quartile.

To calculate the sample interquartile range we find the medians of the ordered data that
lie below and above the median. These are Q1 and Q3, which are estimators for the first and
third population quartiles, respectively. The population median is the second population
quartile, so its estimator is often referred to as Q2. Q1 is subtracted from Q3 to obtain the
sample interquartile range, IQR (Fig 4.5):

IQR “ Q3 ´ Q1. (4.8)
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Figure 4.5. Heuristic for the interquartile range.

Excel does not have a function for IQR, but the R function for IQR is IQR.

IQR(finches)

[1] 120

Skewness and Kurtosis

Population Skew and Kurtosis
We can also describe distributions with respect to their shape. Two important shape
descriptors are skewness and kurtosis. Skew describes the symmetry of a distribution
whereas kurtosis describes its peakedness. The population skewness and kurtosis (i.e.,
parameters) are denoted as γ1 and γ2 respectively, and are derived from expected values:

γ1 “
ErpX ´ EpXqqs3

rSDpXqs3 , (4.9)

γ1 “
ErpX ´ EpXqqs4

rV arpXqs2 . (4.10)

For a symmetric distribution, skewness will equal zero; i.e., γ1 “ 0. In this case, the
population mean and median will be equal because the tails of the distribution will be of
equal length and symmetric. Conversely, if γ1 ‰ 0, the distribution is asymmetric and
the mean will be drawn towards the long tail. That is, the mean will be to the right of the
median in a distribution with a longer right tail (Fig. 4.4). A distribution with a “long”
right-hand tail, and a squashed left-hand tail will be positively-skewed, resulting in γ1 ą 0.
Conversely, a distribution with a “long” left-hand tail and a squashed right-hand tail will
be negatively-skewed, resulting in γ1 ă 0. If a distribution is normal (Lab 5), it will be
mesokurtic, and γ2 will equal 3. Because of this, the parameter γ2 excess, defined to be:

γ2 excess “ γ2 ´ 3. (4.11)

Note that estimates from the function IQR are based on the R function quantile (type ?quantile for
more information). As a result, estimates from IQR may differ slightly from those obtained using Eq. 4.8.

72



The parameter γ2 excess is generally used to define the kurtosis of distribution. Normal
distributions will have γ2 excess “ 0, strongly peaked (leptokurtic) distributions will have
γ2 excess ą 0, and flat-looking (platykurtic) distributions will have γ2 excess ă 0.

Sample Skew and Kurtosis – Method of Moments
We can estimate γ1 and γ2 with the estimators G1 and G2, respectively. The sample skew
and kurtosis, G1 and G2, are method of moments estimators. That is, they are based on
Eq. 4.12, in which the jth sample moment is given by:

mj “
1
n

n
ÿ

i“1
pXi ´ X̄q

j (4.12)

To obtain the first or central sample moment, m1, we let j “ 1 in Eq 4.12. Thus, m1 is
the average deviation of all observations from the sample mean. By definition m1 ” 0. That
is, the sum of the differences of observations from the sample mean must equal 0. To obtain
second sample moment m2 we let j “ 2 in Eq. 4.12, and so on. Note that m2 is a biased
(low) version of the sample variance. We calculate G1 as:

G1 “
m3

m
3{2
2

. (4.13)

we calculate G2 excess (the estimator for γ2 excess) using:

G2 excess “
m4

m2
2

´ 3. (4.14)

Example 4.4
Table 4.3 and subsequent calculations show the steps necessary to calculate the sample

skew, G1, and sample excess kurtosis, G2 excess, by hand.

Table 4.3. Calculations required for skewness and kurtosis estimates for the finch data (see
Table 4.2).

Finch counts pxi ´ x̄q1 pxi ´ x̄q2 pxi ´ x̄q3 pxi ´ x̄q4

200 -311.667 97136.11 -30274088 9.44E+09
280 -231.667 53669.44 -12433421 2.88E+09
280 -231.667 53669.44 -12433421 2.88E+09
297 -214.667 46081.78 -9892222 2.12E+09
298 -213.667 45653.44 -9754619 2.08E+09
380 -131.667 17336.11 -2282588 3.01E+08
400 -111.667 12469.44 -1392421 1.55E+08
1220 708.3333 501736.1 355396412 2.52E+11
1250 738.3333 545136.1 402492162 2.97E+11

řn
i“1 xi 4605 0 1372888 679425793 5.69E+11

mj 0 152543.1 75491755 6.32E+10
x̄ 511.666667
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G2 “
m3

m
3{2
2

“
75491755

152543.13{2 “ 1.27,

G2 excess “
m4

m2
2

“
6.3197 ˆ 1010

152543.12 “ ´0.284.

We could speed up these “by hand” calculations using R.

x.bar <- mean(finches)
m2 <- sum((finches-x.bar)ˆ2)/9
m3 <- sum((finches-x.bar)ˆ3)/9
m4 <- sum((finches-x.bar)ˆ4)/9

G1 <- m3/m2ˆ(3/2)
G1

[1] 1.267099

G2.excess <- m4/m2ˆ2 - 3
G2.excess

[1] -0.2841179

The Excel functions for skew and kurtosis, =SKEW and =KURTOSIS, are calculated in
a different way than shown in Eqs. 4.13 and 4.14. However, we can confirm our results by
using the functions skew and kurt from the library asbio.

library(asbio)
skew(finches, method = "moments")

[1] 1.267099

kurt(finches, method = "excess")

[1] -0.2841179

■

For more information type ?skew or ?kurtosis after loading the package asbio. Excel calculates the
unbiased estimators for γ1 and γ2 excess. By default, kurt and skew also calculate unbiased estimates,
resulting from the default argument: method = "unbiased".

74



Linear Transformations
When we perform a linear transformation on a random random variable or dataset we
add or multiply constants to all outcomes from the random variable or dataset. Linear
transformation will result in straightforward changes to the concomitant parameters and
statistics.

If X is a random variable and a and b are constants, then

Epa ` bXq “ a ` bEpXq, (4.15)

V arpa ` bXq “ b2V arpXq, (4.16)

SDpa ` bXq “ bV arpXq. (4.17)
The left side of Eqs. 4.15, 4.16 and 4.17 show the form of the linear transformation.

Specifically, we are adding a constant a to the original random variable X and multiplying by a
constant, b. Eq. 4.15 expresses the mean of the random variable following this transformation,
Eq. 4.16 gives the variance, and 4.17 gives the standard deviation.

Let’s consider the case that a ‰ 0 and b “ 1 in Eqs 4.15, 4.16 and 4.17. Adding or
subtracting a from a random variable results in a new random variable with a mean equivalent
to the old mean plus or minus a. The new variance and standard deviation, however, will be
identical to the old variance and standard deviation.

Now, let’s consider the case that a “ 0 and b ‰ 1 or 0 in Eqs. 4.15, 4.16 and 4.17.
Multiplying a random variable by b results in a new random variable with a mean equivalent
to the old mean times b. The new variance will be the old variance times b2, and the the new
standard deviation will be the old standard deviation times b.

These principles also hold for statistics (Table 4.4.)

Table 4.4. Sample mean, variance, and standard deviation after data are linearly transformed
by adding or subtracting by a constant a or multiplying by a constant, b.

Original data: x x ˘ a x ˆ b
Sample mean x̄ x̄ ˘ a x̄ ˆ b

Sample variance s2 s2 s2 ˆ b2

Sample standard deviation s s s ˆ b

Example 4.5
Assume that over twenty years the mean maximum June temperature in a desert location

is 95˝F, with a variance of 5˝F2. What is the mean and variance in degrees C? Because:

C˝
“

5
9pF ´ 32q

˝,
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converting from Fahrenheit to Celsius is a linear transformation. We have:

x̄C “
5
9p95 ´ 32q

˝
“ 35˝C,

s2
C “

ˆ

5
9

˙2

ˆ 5˝
“ 1.54˝C2.

■

Assignment 4

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

Parameters

1. (3 pts) What is a parameter? Give an example.

2. (3 pts) What is an estimator? Give an example.

3. (8 pts) Let X be a discrete random variable whose distribution is described
by the function fpxq “ x{8 if x “ 1, 2, or 5, and fpxq “ 0 otherwise. Find:

a) EpXq

b) EpX2q

c) V arpXq

d) SDpXq

4. (10 pts) For the soil %N data from Table 1 from Lab 1, calculate summary
statistics “by hand” using either Excel or R (recommended) to help. Include
snapshots to show your work.

• In Excel you are allowed to use only sorting functionality built into
Excel, the function =SUM, and the mathematical characters -, +, ˆ, /,
and *,
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• In R you can use only the functions sort, sum, and the mathematical
characters -, +, ˆ, /, and *. If you are using R, here is the %N
data:
N <- c(15.2, 14.2, 16.2, 13.1, 10.2, 15.5, 11.1, 14.9, 12.3, 10.1)

a) Sample mean, X̄

b) Sample median
c) Sample variance
d) Sample skew, G1

e) Sample excess kurtosis, G2 excess

5. (3 pts) Check your answer from Q. 4d, and 4e in R. To do this:

• Open R
• Load the asbio library by typing: library(asbio)
• For the method of moments skew, type:

skew(N, method = "moments")

• To get the excess estimate, G2 excess, type:

kurt(N, method = "excess")

Take snapshots to show your work.

6. (4 pts) Interpret the skewness and kurtosis values in Q. 5.

7. (5 pts) In Excel, calculate summary statistics for the birth weights for the
smokers and the nonsmoker groups separately (i.e., summarize each group)
using the data from week 1. Calculate the sample mean, sample median,
sample standard deviation, sample variance, sample skew and sample kur-
tosis.

NOTE: To speed this process up, use the Descriptive Statistics Wizard
under Tools ą Data Analysis ą Descriptive Statistics, which allows
calculation of all of these statistics simultaneously. Paste the Excel output
into the document you will hand in.
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8. (4 pts) Repeat question 7 using R by following the steps below.

• Download the birthweight.csv dataset from Lab 1 into R. To do
this, type: (or paste) the following code into R, and then navigate to
the file:

birthweight <- read.csv(file.choose())

• To get summary statistics with respect to levels in a categorical variable
(e.g. smoker and non-smoker) we can use the function tapply. For
example, to get the sample means for both smoker and nonsmoker
groups individually and simultaneously, you could type:

tapply(birthweight$bwt, birthweight$smoke, mean)

• To get all of the stats for each group simultaneously, paste the following
function into R.

stats <- function(x, digits = 5){
mean <- mean(x)
median <- median(x)
kurt <- kurt(x, "excess")
skew <- skew(x)
var <- var(x)
sd <- sd(x)
round(t(cbind(mean, median, kurt, skew, var, sd)), digits)
}

• Now type:

tapply(birthweight$bwt, birthweight$smoke, stats)

Take snapshots of the output to show your work.

9. (6 pts) In R add 10 to each birth weight and calculate summary stats. To
do this, first type:
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bwt10 <- birthweight$bwt + 10

Then calculate summary stats for bwt10 by groups, as before, by typing:

tapply(bwt10, birthweight$smoke, stats)

a) How does this affect the mean of the smoker birth weight?
b) How does this affect the standard deviation of smoker birth weight?
c) How does this affect the variance for smoker birth weight?

10. (6 pts) In R multiply each birth weight by 10 and calculate summary stats.
To do this, first type:

bwt.times.10 <- birthweight$bwt * 10

Then calculate summary stats for bwt10 by groups, as before, by typing:

tapply(bwt.times.10, birthweight$smoke, stats)

a) How does this affect the mean of the smoker birth weight?
b) How does this affect the standard deviation of smoker birth weight?
c) How does this affect the variance for smoker birth weight?

11. (8 pts) This question relates to appropriateness of statistical measures.

a) Why might we want to use the median instead of the mean as a measure
of the centrality for a sample?

b) Calculate the sample mean using made up data with and without an
outlier using the function mean in R. Provide snapshots to show work.

c) Why might we want to use the interquartile range instead of the variance
as a measure of sample variability?

d) Calculate the sample variance using made up data with and without an
outlier using the function var in R. Provide snapshots to show work.

Q1 3pts, Q2 3pts, Q3 8pts, Q4 10pts, Q5 3pts, Q6 4pts, Q7 5pts, Q8 4pts, Q9 6pts, Q10 6pts, Q11 11pts.
Total pts: 63.
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Appendix: R-code used in this lab
• Simple statistical functions.

The functions skew and kurt require the package asbio.

Function Acronym Description

mean(x) X̄ Arithmetic mean of x

median(x) Q2 Median of x.

sd(x) S Standard deviation of x

var(x) S2 Variance of x.

IQR(x) IQR Interquartile range of x.

skew(x) G1 Skew of x

kurt(x) G2 Kurtosis of x

• Summary statistics by groups:

Operator Operation To We type

tapply(X, INDEX, FUN)

Summarize data in X

for levels in

INDEX, with respect

to stats in FUN

Calculate means of

data in y

for levels in x

tapply(y, x, mean)
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5

Normal Distribution, Sampling
Distributions, Confidence Intervals

Lab 5 Topics

1. Normal distribution

• Standard normal distribution
• Empirical rule

2. Adding and subtracting normal random variables

3. Sampling distributions

• Central limit theorem

4. Confidence interval for µ

5. Sample size adequacy

The Normal Distribution
The most commonly used distribution in statistics is the normal distribution. It is popular
for three reasons. First, normal distributions are symmetric Thus, given a distribution
centered at 0, P pX ă xq will be equivalent to P pX ą xq. This facilitates the interpretation
and probability calculations for lower and upper tailed hypothesis tests (Lab 6). Second,
normal distributions are simply very useful for describing many real biological variables (e.g.,
height, weight, girth, etc.). Third, the sampling distributions of many statistics become
normally distributed given large sample sizes, regardless of the distributional characteristics
of the sampled parent distribution. Sampling distributions are a central topic of this lab.
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If a random variable, X, follows a normal distribution, it will have the PDF:

fpxq “
1

σ
?

2π
e´ 1

2 p x´µ
σ q (5.1)

where σ ą 0, µ P R, x P R.

The normal distribution has two parameters, µ and σσ, which represent the mean and
the standard deviation of the PDF, respectively. That is, if a random variable X is normally
distributed, EpXq “ µ and V arpXq “ σ2 (Lab 4). If X is normal, we denote this as:
X „ Npµ, σ2q. The distribution Np0, 1q is shown in Fig. 5.1.
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Figure 5.1. The PDF and CDF of the distribution Np0, 1q.

Note that the normal PDF has a symmetric bell-shaped appearance whereas the CDF is
sigmoidal (S-shaped).

Example 5.1
What is the density fp3q, given X „ Np5, 4q? We have:

fp3q “
1

2
?

2π
e´ 1

2 p 3´5
2 q “ 0.120985.
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To calculate normal densities (and probabilities) in Excel we use the function =NORM.DIST.
It requires four arguments:

1. The value of x.

2. The mean, µ.

3. The standard deviation, σ.

4. Whether or not you want the CDF (TRUE) or the PDF (FALSE).

Thus, we have:

=NORM.DIST(3, 5, 2, FALSE) = 0.120985

In R we use the function dnorm to get density and pnorm to get cumulative (left tailed)
probabilities. The functions have the same first three arguments as the Excel function
=NORM.DIST. The last argument in =NORM.DIST is not necessary, because dnorm gives
density and pnorm gives cumulative probabilities.

dnorm(3, 5, 2)

[1] 0.1209854

■

The Empirical Rule
In a normal probability distribution, the interval ˘1σ from µ contains approximately 68% of
the distributional area, the interval ˘2σ from µ contains approximately 95% of the area of
the distribution, and the interval ˘3σ from µ contains 99.7% of the area (Fig. 5-2). This is
known as the empirical rule (Fig 5.2).
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Figure 5.2. Standard deviations in a normal distrinition and the empirical rule.

Using the characteristics of a normal distribution we can find the area under a normal
curve, corresponding to particular ranges of outcomes, to find the corresponding probabilities.
For instance, the probability of outcomes greater than or equal to a particular value. x.

The Standard Normal Distribution
The standard normal distribution or Z distribution is a normal distribution in which
µ “ 0, and σ2 “ σ “ 1. Thus, if a random variable Z follows a standard normal distribution,
we write this as Z „ Np0, 1q (see Fig. 5.1).

We can standardize any normal distribution, X „ Npµ, σ2q, to be a standard normal
distribution, Z „ Np0, 1q, using Equation 5.2

Z “
X ´ µ

σ
(5.2)
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where µ is the mean and σ is the standard deviation of the un-standardized normal
variable, X. Once standardized, outcomes in the original variable are expressed as standard
deviations away from the mean of the standard normal distribution.

An outcome, x, from any normal distribution becomes a standard normal outcome
(z-score) by applying:

z “
x ´ µ

σ
.

Historically, the standard normal distribution arose because of the practical need for a
single normal distribution in statistical textbooks and manuals, for use in inference. Given a
single normal distribution, probabilities derived from integration could be placed in look-up
tables for direct application or interpolation. The advent of modern statistical software has
made calculation of probabilities for any normal distribution a simple endeavor, and has thus
decreased the overriding need for the Z-distribution.

Example 5.2
The heights of young women (20-23 years of age) in the United States are normally

distributed with µ “ 64.5 inches and σ “ 2.5 inches. What proportion of women are less than
or equal to 60 inches tall. That is, what is P pX ď 60q, given X „ Np64.5, 6.25q (Fig. 5.3)?
Importantly, the probability of women ď 60 inches tall is equivalent to the proportion of
women ă 60 inches tall if X is continuous. This is because probabilities for discrete outcomes,
P pX “ xq, will equal zero.
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library(asbio)
shade.norm(60, mu = 64.5, sigma = 2.5)
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x

)

P (X ≤ 60) = 0.03593X  ~ N (64.5 , 6.25)

Figure 5.3. Distribution of young women’s heights, X „ Np64.5, 6.25q. It is always helpful to
draw the distribution and denote the area of the curve you are interested in.

To calculate this probability, we can

1. Standardize X, with respect to the outcome 60.

P pX ď 60q “ P

ˆ

Z ď
60 ´ 64.5

2.5

˙

“ P pZ ď 1.8q

Following the Z transformation, a height of 60 inches is equivalent to -1.8. This means
that 60 inches is 1.8 standard deviations below the mean height of 64.5 inches.

2. We find the proportion of the Z distribution less than or equal to -1.8. We can do this
by using either Excel or R.
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=NORM.DIST(-1.8, 0, 1, TRUE) = 0.0359

pnorm(-1.8) # by default, pnorm uses a standard normal PDF

[1] 0.03593032

3. We find that P pZ ď ´1.8q “ 0.0359. Therefore the proportion of young women less
than or equal to 60 inches tall is 0.0359. That is, approximately 3.6% of women are
less than or equal to 60 inches in height.

4. Note: we could have actually bypassed the whole Z-transformation process and used
the original normal distribution to calculate the identical probability.

=NORM.DIST(60, 64.5, 2.5,TRUE) = 0.0359

pnorm(60, 64.5, 2.5)

[1] 0.03593032

■

Adding and Subtracting Normal Random Variables
Linear combinations of normal random variables will also be normally distributed. In
particular, let X and Y be independent normal random variables: X „ NpµX , σ2

Xq and
Y „ NpµY , σ2

Y q, and let Q “ X ` Y , then,

Q „ Npµx ` µY , σ2
X ` σ2

Y q. (5.3)

Further, if Q “ X ´ Y

Q „ Npµx ´ µY , σ2
X ` σ2

Y q. (5.4)
Note that the variances are still added to get the variance of Q in Eq. 5.4, even though

X and Y are being subtracted from each other.

Sampling Distributions
If you were to randomly sample a population many times with the same sized sample, say
n “ 10, and calculate a sample mean, X̄, for each of those samples, those means would
constitute a sampling distribution. It turns out that if the parent distribution (the
one we sample from) has a mean, µ, and a variance, σ2, then sampling distribution of X̄ will

87



always have a mean of µ and a variance of σ2{n, and the standard deviation for the sampling
distribution of X̄ is σ{

?
n . We call this the standard deviation X̄, the standard error of

the mean and denote it as σX̄ .

Central Limit Theorem
A very important tenet for inferential statistics is the central limit theorem. It concerns
the parameters of the sampling distribution of X̄ . It is a fact that if the parent population
has the distribution Npµ, σ2q, then X̄ will also be normal: X̄ „ Npµ, σ2{nq. The central
limit theorem states that even if the shape of the parent population is not normal, if the
sample size is sufficiently large, (i.e. n ě 30) the the sampling distribution of the mean will
be approximately normal. This can be stated summarily as:

X̄
d

Ñ́ Npµ, σ2
{nq, (5.5)

where d
Ñ́ mean “converges in distribution.”

The implications of this are profound. The parent population can have essentially any
distribution shape, but if the sample size is sufficiently large we can safely assume that the
sampling distribution of X̄ is approximately normally distributed. Consider Fig 5.4 in which
an exponential parent distribution is sampled to obtain sampling distributions of X̄ for six
samples sizes. A sample size of one is used to create the first plot . Because each mean is
equivalent to an individual observation from EXP p1q, the plot simply re-displays the parent
distribution which is strongly positively skewed. As predicted by the central limit theorem,
the sampling distribution of X̄ becomes increasingly normal as sample size increases.
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Figure 5.4. Empirical distributions of X̄ for sample sizes of 1, 3, 7, 10, 20 and 50 from an
exponentially distributed parent distribution, EXP p1q. Each histogram represents 10,000
random means.

Note that while the sample size n “ 30 is often used as a cutoff for adequate sample size,
this number will actually be determined by the shape of the parent distribution. The more
normal the parent distribution, the smaller the sample size that will be required for a normal
distribution of X̄.
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Confidence Interval for µ, σ2 Known

We can use information concerning the sampling distribution of X̄ to quantify how “confident”
we are in a particular estimate of µ. We do this by calculating the confidence interval for
µ. Confidence intervals are strongly tied to the concept of significance testing described in
Lab 6. Confidence, is equal to 1 ´ α, where α is the significance level: the probability of
rejecting a null hypothesis when it is actually true. Conventional values of α, are 0.05 and
0.01, corresponding to 95% and 99% confidence intervals.

Here is the formula for a p1 ´ αq100% confidence interval for µ, if σ2 is known.

X̄ ˘ z1´pα{2q ¨
σ

?
n

. (5.6)

The script z1´pα{2q indicates the inverse CDF (cumulative distribution function) of the
standard normal distribution for the probability 1 ´ pα{2q. It literally means: “find the value
of the Z-distribution such that the proportion 1 ´ pα{2q lies to the left of the value.” Given
the conventional case that α “ 0.05, we have:

1 ´ pα{2q “ 1 ´ p0.05{2q “ 1 ´ 0.025 “ 0.975.

Example 5.3
An alpine vegetation study using 25 samples at alpine late snowbank sites found that

the mean cover of the grass Agrostis variabilis was 14.6%. Assume that we know σ “ 4.
Calculate the 95% confidence interval for µ. We have:

x̄ ˘ z1´pα{2q ¨
σ

?
n

14.6 ˘ z1´p0.05{2q ¨
4

?
25

14.6 ˘ z0.975 ¨
4

?
25

14.6 ˘ 1.959964 ¨
4
5 “ p13.03203, 16.16797q

We must obtain the inverse CDF outcome 1.959964 « 1.96 using Excel or R.

To calculate normal inverse CDF quantiles in Excel we use the function =NORM.INV. It
requires three arguments:

1. A lower tailed probability of interest. In our case, this be 1 ´ α{2 “ 0.975.

2. The mean, µ of the normal distribution of interest. Recall that we are using a Z-
distribution in current example, so µ “ 0.
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3. The standard deviation, σ, of the normal distribution of interest. Because we are using
a Z-distribution, σ2 “ σ “ 1.

=NORM.INV(0.975, 0, 1) = 1.95996.

In R we use the function qnorm to get normal quantiles. The function has the same
arguments as =NORM.INV.

qnorm(0.975, 0, 1)

[1] 1.959964

Note that between the quantiles -1.96 and 1.96, we have the central 95% of a Z-distribution
(2.5% is in each tail). This is why the lower tailed probability 0.975 corresponds to a 95%
confidence interval (Fig. 5.5).

91



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x

)

P (−1.96 ≤ X ≤ 1.96) = 0.95X  ~ N (0 , 1)

Figure 5.5. Central 95% of the Z-distrubtion.

We can check our confidence interval result using the function ci.mu.z from asbio.

ci.mu.z(xbar = 14.6, sigma = 4, n = 25, conf = 0.95, summarized = TRUE)

95% z Confidence interval for population mean
Estimate 2.5% 97.5%
14.60000 13.03203 16.16797

■

Correct interpretations of confidence intervals
There are correct and incorrect ways to interpret confidence intervals. The following are
correct interpretations for the previous example.
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1. By definition, we are 95% confident that the true mean vegetation cover (i.e. µ) of A.
variabilis lies in the interval p13.032, 16.168q.

2. The confidence interval for µ comprises the central 95% of the estimated sampling
distribution of X̄, for a sample size of 25 (Fig 5.6).

3. Assume that we sampled the A. variabilis parent population an infinite number of
times, with a sample size 25, and calculated an infinite number of 95% confidence
intervals for µ from these samples. Then, 95% of those intervals will contain µ (Fig 5.7).
This interpretation clearly shows that confidence intervals fall under the frequentist
paradigm for probability.

Incorrect interpretations of confidence intervals
The following are common incorrect confidence intervals interpretations applied to the previous
example.

1. There is a 95% probability that the confidence interval contains µ. This interpretation
is incorrect because, under the frequentist paradigm µ is a constant. Therefore, once
a confidence interval for µ has been calculated, it either contains µ or it doesn’t; i.e.,
P pµ in intervalq “ 1 or P pµ in intervalq “ 0.

2. We are 95% confident that the sample mean cover is in the confidence interval. This
is also incorrect. We are completely certain that the sample mean is in the center of
interval because we used it to obtain the confidence interval.
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Figure 5.6. Central 95% of the the estimated sampling distribution of X̄ for the previous
problem. Note that the distribution mean is the sample mean, 14.6, and the variance =
16/25.
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Figure 5.7. Animated depiction of a frequentist heuristic for a confidence interval for µ. To
run the animation, click play while viewing in an appropriate PDF reader (e.g., Adobe Reader
or Foxit Reader).

Sample Adequacy
We can also use our formula for the confidence interval for µ to compute the correct sample
size for a given margin of error and confidence level, p1 ´ αq. Because:

m “ z1´pα{2q

σ

n?
nm “ z1´pα{2qσ
?

n “
z1´pα{2qσ

m

n “

´z1´pα{2qσ

m

¯2
.

95



Assignment 5

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

The normal distribution

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

1. (5 pts) To see a depiction of the normal distribution go to Chapter 3 >
Pdf depiction in the asbio book menu. Select normal and uncheck the
Show cdf widget. Mac users, type: see.norm.tck() to access the GUI
directly. Answer the following questions.

a) Is this distribution used to represent continuous or discrete random
variables? Do you know this just by looking at the graph? Why?

b) How many parameters does the distribution have?
c) What parameter determines the location of the mode (peak of the

curve)?
d) What parameter determines the thickness of the curve tails on either

side of the mode?

2. (2 pts) Given X „ Np2, 4q, find fp4q “by hand” using R or Excel to help.
Specifically, you can use =NORM.DIST in Excel or dnorm in R.

3. (8 pts) Let X „ Np2, 4q and let Z „ Np0, 1q, find the following probabilities
using =NORM.DIST in Excel or pnorm in R. Indicate if the probability is
incalculable or if Excel or R are unneeded for calculating the probability.

a) P pX ă 2.57q
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b) P pX ą 1q

c) P pX ě 1q

d) P pX “ 1q

e) P pZ ą 1q

f) P p´1.96 ą Z ą ´0.5q

g) P p´1.96 ă Z ă ´0.5q

4. (10 pts) Draw the probabilities from Q. 3 using shade.norm in R to make
the figures. Attach figures to homework with appropriate captions. It is
not necessary to provide a figure if the probability is redundant (from a
previous answer in Q 3) or incalculable. Type ?shade.norm to get help
making figures. In particular, see example code at the bottom of help page
for normal probabilities.

5. (2 pts) Given X „ Np2, 4q and P pX ď xq “ 0.2, find x using functions for
the inverse normal CDF in Excel or R. In particular, use =NORM.INV in
Excel or qnorm in R.

Adding and subtracting normal random variables

6. (8 pts) Bob and Jimmy Joe are middle distance runners. The 1600 meter
(metric mile) times for Bob can be represented by a random variable, B,
which is normally distributed with a mean of 260 seconds and a variance of
20 seconds2; i.e., B „ Np260, 20q. The 1600 m times for Jimmy Joe can be
represented by a random variable, J , which is normally distributed with a
mean of 265 seconds and a variance of 17 seconds2; i.e., J „ Np265, 17q.

a) What are the parameters values of the distribution, J ´ B? That is, if
J ´ B „ Npµ, σ2q what are µ and σ2? Hint: see the section on Adding
and Subtracting Normal Random Variables.

b) Given the distribution from a), find the probability that Jimmy Joe
beats Bob in a 1600 meter race? i.e., find P pJ ´ B ă 0q.

c) Draw a picture of the problem using shade.norm.
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Sampling distributions

7. (8 pts) Go to Chapter 5 > Sampling distribution basics in the asbio
book menu. Mac users, and others who wish to access the GUI directly
can type samp.dist.mech.tck().

In this demonstration, mountain goat weights (in kg) will be randomly
obtained from a normal parent distribution, Np90.5, 225q. The goats are
sampled with a sample size of ten, and a mean weight is calculated for the
sample, x̄. The sample mean weight is then added to an overall distribution
of mean weights.

a) Choose one iteration.
i) Were the randomly chosen goats the same weight?

ii) What was the sample size?
iii) What statistic was calculated?

b) Choose 100 iterations. Include the resulting figure in your assignment
with an appropriate caption.

i) Does the sample size (number of goats) stay consistent from itera-
tion to iteration?

ii) What statistic is calculated at each iteration?
iii) Does average goat weight change from sample to sample?

8. (9 pts) Go to Chapter 5 > Sampling distribution in the asbio book
menu. For the type of depiction choose mean and snapshot. Mac
users, and others who want to access the correct GUI directly can type
samp.dist.snap.tck1(). Note that the default parent population is
exponential, a strongly positively-skewed distribution.

a) Run the function using the GUI defaults. Include resulting figure in
your assignment.

b) What are the distributions that the histograms are depicting? That is,
what are the individual outcomes making up the distributions?

c) What shape is the parent distribution? Symmetric? Platykurtic?
d) How do the histograms demonstrate the central limit theorem?
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e) Show a sampling distribution other than than the sampling distribu-
tion of the mean by typing samp.dist.method.tck() and choosing a
statistic that is not the sample mean. Include as a figure, and in the
figure caption describe what is happening as sample size increases.

Confidence interval for µ

9. (6 pts) Go to Chapter 5 > Confidence intervals and run the GUI using
the default values. Mac users, and others who want to run the application
directly, should type anm.ci(par.val = 0, par.type = "mu").

a) What proportion of the random calculated intervals contain the true
value for µ, 0? (include figure with an appropriate caption).

b) According to interpretation three in the subsection entitled Correct
interpretations of confidence intervals, what proportion of calculated
intervals would contain µ if we had an infinite number of samples (not
just 100)?

10. (6 pts) The citrus rust mite (Phyllocoptruta oleivora) is a major pest of
citrus in Florida. The arthropod punctures the cells of leaves of fruit,
causing considerable damage to citrus crops. Recently, more citrus growers
have gone to a program of “preventative maintenance spraying for rust
mites.” In evaluating the effectiveness of the program, a random sample
of 60 10-acre plots is taken. These plots show an average yield, x̄, of 850
boxes of fruit with a standard deviation, σ, of 100 boxes.

a) Calculate a 98% confidence interval for the true mean yield, µ by
hand, using function qnorm in R or NORM.INV in Excel to help when
necessary. See Example 3 for guidance. Show work using snapshots
when necessary.

b) Interpret your results correctly.
c) Verify your results using the function ci.mu.z. See code from Example

3 shown here.
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Sample adequacy

11. (4 pts) A biologist wishes to estimate the effect of an antibiotic on the
growth of a particular bacterium by examining the mean amount of bacteria
present per cm2 when a fixed amount of an antibiotic is applied. Previous
experimentation with the antibiotic on this bacterium indicates that the
population standard deviation, σ, is 11/cm2.

a) Determine the number of cultures that need to be developed to estimate
the mean number of bacteria, with 99% confidence, given a margin of
error of m “ 4{cm2. Hint: see the Sample Adequacy section.

b) Interpret your result correctly.

Q1 5pts, Q2 2pts, Q3 8pts, Q4 10pts, Q5 2pts, Q6 8pts, Q7 8pts, Q8 9pts, Q9 6pts, Q10 6pts, Q11 4pts.
Total pts: 68.
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Appendix: R-code used in this lab
Here are R functions for evaluating the normal distribution, Npµ, σ2q.

Function What it does
dnorm(x, mean, sd) Evaluates the normal PDF at x given mean = µ and sd = σ.
pnorm(q, mean, sd) Evaluates the normal CDF at q.
qnorm(p, mean, sd) Evaluates the normal inverse CDF at p.
rnorm(n, mean, sd) Generates n pseudo-random samples from the normal distribution.
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6

Hypothesis Testing

Lab 6 Topics

1. Deduction

• Modus tollens
• Affirming the consequent

2. The null hypothesis

• Significance testing

3. One sample z-test

4. Type I and type II error

Deduction
Statistical hypothesis testing is based on a type of logical reasoning called deduction.
Deductive arguments have two distinguishing characteristics:

1. General premises lead to a more specific conclusion.

2. If the premises are true then the conclusion from a valid deductive argument must also
be true.

Argument one is a simple biological example of deduction.
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Argument 1

Bacterial cells do not have nuclei. Premise 1

Escherichia coli (E. coli) is a bacterium. Premise 2

E. coli does not have nuclei. Conclusion

Next, let’s consider a pair of deductive arguments in the context of data. To do this, let
H be a hypothesis, and let I be an implication of H (the outcome I will always occur if H is
true).

Argument 2

If H is true, then so is I Premise 1

Available evidence shows I is not true Premise 2

H is not true. Conclusion

Argument 3

If H is true, then so is I Premise 1

Available evidence shows I is true Premise 2

H is true. Conclusion

In Argument 2 we reject the hypothesis H using a logically correct form of deduction
called modus tollens. Argument 2 is deductive because if the premises are true then
the conclusion must be true as well. This form of argument is also called denying the
consequent because the consequence of H is denied, resulting in refutation of H.
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Conversely, Argument 3 is a fallacious form of deduction called affirming the consequent.
It is fallacious because the conclusion may be false even if the premises are true. As in
Argument 2, the first premise in Argument 3 indicates that I is dependent on H, not the
converse. However the conclusion is based on a reversal of the conditionality of premise one,
given in premise two. As a result, the truth of I (suggested in the second premise) may not
signify the truth of H. Additionally, the second premise is inconclusive because it consists of
necessarily incomplete empirical evidence. Because at least some information concerning H
is unknown, we cannot prove that hypothesis H is true. At best we can say that we have
failed to reject H.

The implication is that we can only deductively reject or fail to reject a hypothesis
whose premises include empirical data.

The Null Hypothesis
By rejecting a hypothesis we have taken decisive action: we have eliminated a particular line
of reasoning. However this does not clarify how one would support a hypothesis. One way
around this difficulty is the null hypothesis, denoted H0. The null hypothesis generally
represents a default position, or a statement of no effect or no difference. The alternative
hypothesis, denoted HA, is generally constructed to encompass all possible outcomes other
than those stated in H0. Indeed, whereas H0 defines no effect, HA generally represents the
expected effect. Thus, HA is often a mathematical distillation of a research hypothesis.
Because HA is the opposite of H0, rejection of H0 provides conceptual support for HA.

We concern ourselves with H0 and not with a research hypothesis directly for two reasons.
First, as noted above, we cannot prove a hypothesis is true, however it may be possible to
prove it is false, and H0 is often a hypothesis we do not mind rejecting. Second, it is simply
easier to consider statistical evidence from the perspective of H0. This is because the research
hypothesis will only suppose that there is “some effect.” Exact effects (or the exact meaning
of “no effect”) can be specified in H0.

A large number of null hypothesis testing procedures have been developed. Despite this
variety all such methods take the same approach. They all ask the question:“How probable
are the data if H0 is true?”

Example 6.1
Hansen et al. (2011) vaccinated twenty-four rhesus monkeys against a powerful form of

SIV (a simian cousin of HIV). The researchers believed that the vaccine would provide at
least some additional protection from SIV. Thus, their null hypothesis was that the vaccine
would provide no additional protection. The vaccine was found to protect half of the tested

For instance, the research hypothesis in Example 1 is that the new vaccine would provide additional
protection from SIV. A mathematical distillation of the research hypothesis could be HA: The true mean
effect of the new vaccine ‰ 0. Note, is often easier to define HA first, and then specify H0 as the opposite of
HA.
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monkeys. This result would be highly unlikely if H0 were true. Thus, the investigators
rejected H0, and concluded that their results supported the efficacy of the new vaccine.

■

Test statistics and P -values
In a null hypothesis we might predict that a parameter describing the difference between two
populations is zero, or that a parameter equals a particular number (often zero). Thus, when
H0 is true we would expect an estimate of the parameter to be near the value specified in H0
(e.g., zero). An estimator called a test statistic is used to quantify the difference between
the parameter value specified in H0 and a parameter estimate based on data. Generally
speaking, the sampling distribution of the test statistic under H0 will be known. As a result
an investigator can calculate probabilities based on test statistic outcomes assuming that
H0 is true. These are called probability values or P-values. Specifically, a P -value is
the probability that a test statistic would be “as or more extreme” than the one calculated,
given that H0 is true. Thus, P -value have the conditionality: P pdata | H0q. Smaller P -values
provide stronger evidence against H0.

Significance testing
In a widely-used approach called significance testing the choice between rejecting and
failing to reject H0 is based on a decision rule which considers the magnitude of the P -value.
Significance testing defines an outcome that would be extremely unusual under H0 – that
is, an outcome with a very small P -value – as statistically significant. A statistically
significant outcome allows probablistic rejection of H0.

The demarcation value for statistical significance is called the significance level and is
denoted α. Recall from Lab 5 that α is a user-defined probability for type I error, i.e., the
probability of rejecting a null hypothesis when it is actually true. If we let α “ 0.05 (this is
the most common significance level) we are requiring that a significant test statistic would
occur no more than 5% of the time if H0 were true. If we chose α “ 0.01, we are insisting on
even stronger evidence for rejection of H0, i.e., that a significant test statistic would occur no
more than 1% of the time if H0 were true.

If the P -value is less than or equal to α, then we say that a hypothesis test is statistically
significant at level α. Thus, we can also define a P -value as the smallest possible significance
level at which H0 can be rejected.

The structuring of hypothesis statements
Both H0 and HA are generally expressed in terms of a parameter of interest. For instance, the
mean of a normal distribution, µ. The alternative and null hypotheses are generally expressed
as mathematical opposites. The value of µ stipulated by H0 is denoted µ0. Generally, we let
µ0 “ 0.

See Aho (2014, Ch 6) for additional comments and criticisms on significance testing.
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The most common framework for H0 and HA corresponds to a two-tailed test in which
the not-µ0 effect is specified in HA. In this case, the hypotheses for µ would would have the
following form:

H0 : µ “ µ0

HA : µ ‰ µ0

It may be possible to anticipate directionality in a phenomenon under study, prompting
the specification of one-tailed tests. For instance, we might expect plants given a nutrient
supplement would grow larger than control plants given no supplement. There are two
types of one-tailed tests: lower-tailed tests and upper-tailed tests. Directionality in
one-tailed tests is specified in the alternative hypothesis, HA. In a lower-tailed test the null
and alternative hypotheses would have the form:

H0 : µ ě µ0

HA : µ ă µ0

whereas, an upper tailed test would have the form:

H0 : µ ď µ0

HA : µ ą µ0

Let Z be the distribution of the test statistic under H0, that is, the null distribution,
and let z˚ be the observed test statistic. Then,

• A two-tailed P -value is calculated as 2 ¨ P pZ ě |z˚|q.

• A lower-tailed P -value is calculated as P pZ ď z˚q.

• A upper-tailed P -value is calculated as P pZ ě z˚q.

Example 6.2
Assume the null distribution is Z „ Np0, 1q, and we find the test statistic z˚ “ ´1.2 (Fig

6.1).

• The two-tailed P -value is 2 ¨ P pZ ě | ´ 1.2|q “ 2 ˆ P pZ ě 1.2q “ 0.23104.

2 * pnorm(1.2, lower.tail = F)

[1] 0.2301393

• The lower tailed P -value is P pZ ď ´1.2q “ 0.11507.

In some texts H0 is given as H0 : µ “ µ0 for two-tailed, lower-tailed and upper-tailed tests. This effectively
defines the form of the null distribution, but does not elucidate how P -values are calculated (see next).
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pnorm(-1.2)

[1] 0.1150697

• The upper-tailed P -value is P pZ ě ´1.2q “ 0.88493.

pnorm(-1.2, lower.tail = F)

[1] 0.8849303

• Note, in practice only one type of test should be analyzed, and test specifi-
cation should be made a priori.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

P (Z ≤ − 1.2) = 0.115

−4 −2 0 2 4

x

f(
x)

P (Z ≥ − 1.2) = 0.885

−4 −2 0 2 4

x

f(
x)

2[P (Z ≥ |−1.2|)] = 0.231

z* = Value of test statistic under H0

f(
z

*)

Figure 6.1. Calculating P -values for a standard normal null distribution and a test statistic
of -1.2, given lower-tailed, upper-tailed, and two-tailed tests.

■

Non-significant Results
If we have insufficient evidence to reject H0 then we will have very little evidence to support
HA. In order to not waste further time with this line of reasoning it is reasonable to conclude
that HA (and its underlying research hypothesis) are false. Given non-significance we could
revise our hypotheses, recheck our underlying model(s), re-gather data, and thus restart the
steps of the scientific method.
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Significant Results
If we have sufficient evidence to reject H0 this does not mean that H0 is untrue or impossible,
but it does mean that the outcome from our experiment would be unlikely if H0 were true.
Most introductory texts posit that if H0 represents all other outcomes except HA then rejection
of H0 corroborates HA. From this perspective, statements following a significant result have
the form: “We reject H0 and conclude in favor of HA.” It should be emphasized, however,
that just as one cannot identify H0 as true given an insignificant result, one assuredly cannot
define HA as true (despite this claim in some introductory texts) given significance. After a
significant test result an investigator can apply the research hypothesis to other biological
scenarios or datasets to provide additional support and expand the original scope of inference.

Procedure for null hypothesis testing
The most commonly-used procedure for null hypothesis testing is a four-step compromise
between two classic approaches, those of R. A. Fisher and Neyman-Pearson (see (Aho, 2014),
Ch. 6).

1. Specify H0, HA, and the significance level, α, to be used.

2. Calculate the test statistic

3. Calculate the P -value.

4. State a conclusion based on the following decision rule.

• If the P -value is greater than the specified significance level, conclude there is
insufficient evidence to reject H0, and retain H0.

• If the P -value is less than or equal to the specified significance level, reject H0 and
conclude in favor of HA.

One Sample z-test
Our first formal demonstration of hypothesis testing will use a one sample z-test. The test
statistic is calculated as:

z˚
“

X̄ ´ µ0

σ{
?

n
(6.1)

Note that: 1) the test assumes that σ is known, and 2) the denominator in Eq. 6.1 is the
standard error of the sampling distribution of X̄ (Lab 5).

If test assumptions hold (see below), and if H0 is true, z˚ will be a random outcome
from a standard normal distribution. The test statistic will indicate the number of standard
deviations that an observed mean, x, is away from its hypothesized expectation, µ0.
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Test assumptions
All statistical testing procedures, including the one sample z-test have particular assumptions.
Meeting these assumptions will determine if the test results are trustworthy, and allow valid
inferences. We have the following assumptions for the one sample z-test:

1. The underlying parent population is normally distributed with mean µ and
variance, σ2. This assumption is to insure that the distribution of X̄ is normal. Recall
that the distribution of X̄ will always be normal if the parent population is normal.
Importantly, the assumption of parent population normality is only important for small
sample sizes (i.e., n ă 30). In all other cases the sampling distribution of X̄ will be
approximately normal regardless of the distributional form of the parent population,
because of the tenets of the central limit theorem (Lab 5).

2. σ2 is known.

3. Observations are independent. That is, data are from random samples of the parent
population.

Example 6.3
The mean systolic blood pressure for males 35-44 years of age is approximately normal

with a mean of 128 mm Hg, and a standard deviation of 15 mm Hg. The medical director of
a major university looks at the medical records of 72 randomly selected professors from this
age class and finds that x̄ “ 126.07. The director wonders: “Do middle-aged professors in my
university have a different average blood pressure than the general population?”

1. State H0, HA, and α. We will use a conventional significance level of 0.05 and let
µ0 “ 128, to reflect the research hypothesis of the medical director. Thus, we have
α “ 0.05,

H0 : µ “ 128
HA : µ ‰ 128.

The “‰” sign in HA indicates a two-tailed test. That is, we are interested in any
difference between the true mean blood pressure of middle-aged university professors, µ,
and the null mean, µ0. A “ă” sign in HA would indicate that we believe that the actual
true mean blood pressure of professors, µ, is less than 128 mm Hg, and would require a
lower-tailed test. Conversely, a “ą” sign would indicate that we believe that the mean
blood pressure is greater than 128 mm Hg, and would require an upper-tailed test.

2. Calculate the test statistic using Eq. 6.1.

z˚
“

x̄ ´ µ0

σ{
?

n

“
126.07 ´ 128

15{
?

72
“ ´1.091773.

109



3. Calculate the P -value. Calculating the P -value for a two-sided alternative hypothesis
requires finding the proportion of the null distribution that is above |z˚|, and below
its additive inverse, ´|z˚|. Because the standard normal distribution is symmetric, we
can find the probability associated with either tail and multiply it by 2 to get the two
tailed probability.

2 ¨ P pZ ě |z˚
|q “ 2 ¨ P pZ ě 1.091773q

“ 2 ¨ p1 ´ 0.8621q

“ 0.2757131.

We can use Excel or R to find the P -value. In Excel we have:

=2*(1 - NORM.DIST(1.091773, 0, 1, TRUE)) = 0.2749329.

In R we have:

2 * (1 - pnorm(1.091773))

[1] 0.2749329

# or
2 * pnorm(1.091773, lower.tail = F)

[1] 0.2749329

4. State a conclusion. Because P “ 0.2757 is ą 0.05 we fail to reject H0 and conclude that
the blood pressure of middle aged professors at the university is not different from that
of the general population.

We can use the function one.sample.z from asbio to do all of the z-test calculations for
us:

z.test <- one.sample.z(n = 72, null.mu = 128,
sigma = 15, xbar = 126.07,
alternative = "two.sided")

z.test

One sample z-test
z* P-value

-1.091773 0.2749329

Fig 6.2 provides a graphical representation of the P -value.
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shade.norm(-1.091773, tail = "two")
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2 × P (X ≥ |−1.091773|) = 0.27493X  ~ N (0 , 1)

Figure 6.2. Depiction of the P -value as the area under a standard normal distribution for
Example 3.

■

Two-sided significance tests and confidence intervals
There is a fundamental connection between confidence intervals using the confidence level
p1 ´ αq100%, and two-sided significance tests using a significance level of α. Specifically,
If we can reject H0 for a two-sided test using a significance level of α, then µ0 will not be

111



contained in a confidence interval for µ using a confidence level of p1 ´ αq100%. The function
one.sample.z can be used to generate a 95% confidence interval for µ.

z.test$confidence

95% z Confidence interval for population mean
Estimate 2.5% 97.5%
126.0700 122.6052 129.5348

Note that for the systolic blood pressure example, we fail to reject H0 at α “ 0.05, and
µ0 (i.e., 128 mm Hg), is contained in the 95% confidence interval for µ. Conversely, if the
P -value was ď α, µ0 would not be in the interval.

Type I and Type II Error
The significance level and the confidence level are frequentist concepts that say how reliable
the method is given repeated (infinite) sampling. By definition, if we use α “ 0.05 repeatedly
when H0 is in fact true, the test will reject H0 incorrectly 5% of the time, and will fail to
reject a true H0 (correct decision) 95% of the time.

If we reject H0 when is H0 is true, this is a called a type I error. It will occur with a
probability equal to the significance level of a test, α (Table 6.1). On the other hand if we
fail to reject H0 when in fact H0 false, this is a type II error. Type II errors will with a
probability denoted as β. Type I error is generally considered more serious than type II error,
hence its emphasis in significance testing.

Table 6.1. Correct and incorrect decisions in significance testing, with associated probabilities.

H0 True H0 False

Reject H0
Type I error

α
Power
1 ´ β

Fail to Reject H0 1 ´ α
Type II error

β

The probability that we will reject H0 at a fixed α for a particular value of the alternative
hypothesis (a particular effect size) is called power. Power has the probability 1 ´ β (Table
6.1). Just as α “ 0.05 is a conventional value for type I error, β “ 0.2 is becoming a
conventional value for type II error, resulting in a power of 0.8.

Example 6.4
Many nutrients are essential to organisms but are fatal at higher dosages. Let’s say that

extensive testing indicates that the correct RDA of selenium (an essential nutrient, but one
that is fatal at high doses) for an endangered animal is 87.5 mcg (1000 mcg = 1 mg). We
want to test if the RDA of selenium is greater than 87.5 mcg. We quantify the optimal
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amount of selenium by finding the fitness (number of offspring of the animals) at different
dosages. We have the hypotheses:

H0 : µ ď 87.5mcg
HA : µ ą 87.5mcg.

What if we reject H0, but H0 was true? That is, the RDA should be ď 87.5 mcg, but our
test indicates that the RDA is ą 87.5. In this case a type I error would occur and we could
poison all the animals. Solution: use a very conservative α. On the other hand, what if we
fail to reject null but H0 was false? That is, the RDA should be ą 87.5 but our test indicates
that the RDA is ď 87.5. In this case a type II error occurs and all the animals could die from
selenium deprivation. Solution: use a larger α, or a smaller value of β (larger value of 1 ´ β).

■

Figure 6.3. Bears selfishly preventing valid inferences.

Assignment 6

Answer all questions in one MS Word document and submit to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.
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Use complete sentences when appropriate, and make sure any tables, fig-
ures and computer output you include adhere to class standards (see Syllabus).

Deduction

1. (2 pts) Define deduction.

2. (4 pts) Provide an example of modus tollens. Is this a valid or fallacious
form of deduction? Why?

Null hypotheses and P -values

3. (2 pts) Why do we create and test null hypotheses?

4. (2 pts) What is a P -value?

5. (1 pts) When using significance testing you find that the P -value is less
than α. Choose the correct decision.

a) H0 is false.
b) HA is true.
c) Reject H0 in favor of HA.
d) Reject HA in favor of H0.

One sample z-tests

6. (8 pts) Heights of female high school students are assumed to be normally
distributed with a mean of 64.5 inches and a standard deviation, σ “ 5
inches. You take a random sample of 20 female high school freshman at
Marsh Valley High (in Downey ID) and find that x̄ “ 62.3 inches. Test the
hypothesis that the true mean height of female freshman at Marsh Valley
High is less than 64.5 inches. Use a significance level of 0.05.

a) State H0, HA, and α.
b) Calculate the one-sample z-test test statistic.
c) Calculate the P -value.
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d) State your conclusions correctly.

7. (2 pts) Check your answers for Q. 6 using one.sample.z in R. Show output
using snapshots.

8. (2 pts) Using shade.norm draw a picture of the distribution under H0 for Q.
6, and overlay the correct P -value. Include the graph in your assignment.

9. (11 pts) The data were derived from an article in the Journal of the
American Medical Association entitled, Temperature, and Other Legacies
of Carl Reinhold August Wunderlich. Mackowiak et al. (1992) conducted
“A Critical Appraisal of 98.6 Degrees F, the Upper Limit of the Normal
Body Temperature”, by obtaining 129 ”normal” subjects temperatures
from 700 total readings obtained over two days. Bring the data in the Lab
6 folder into R by saving the file onto your computer after navigating to
it, using

normal.temp <- read.csv(file.choose())

Column one contains average body temperatures in degrees F, column two
designates the gender of the sampled individuals (1 = male, 2 = female),
and column 3 records heart rate in BPM.
Calculate the sample standard deviation of body temperatures in R by
typing:

sd(normal.temp[,1])

And calculate the mean by typing:

mean(normal.temp[,1])

The code normal.temp[,1] indicates that the data to be analyzed are in
the first column of normal.temp. Substitute the sample standard deviation
for σ to allow use of a one-sample z-test.
Note that we will learn a much more appropriate way of making inference
to µ when we don’t know σ next week. Test the hypothesis that the true
mean human body temperature is less than 98.6 F (remember H0 will
provide the opposite framework). Use a significance level of 0.05.
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a) State H0, HA, and α.
b) Calculate the one-sample z-test test statistic.
c) Calculate the P -value.
d) State your conclusions correctly. Based on your result, is the value 98.6

F a good measure of the upper limit of human body temperature? Why
or why not?

10. (2 pts) Check your answers for Q. 9 using one.sample.z in R. Show output
using snapshots.

11. (7 pts) Make a histogram showing the distribution of the temperature data
by typing the code below. Include the graph in your assignment.

hist(normal.temp[,1], main = "", xlab = "Boby temperature (F)")

a) Does the data distribution appear left-skewed, right-skewed, or sym-
metric? Provide an explanation for the shape of the distribution in the
histogram.

b) Are the assumptions for the one sample z-test in Q. 9 valid? Why
or why not? Before answering, go to the section concerning z-test
assumptions and reread the section on the central limit theorem from
Lab 5.

Type I, type II error and power

• Open R
• Load the asbio package by typing library(asbio) or by going to

Packages > Load packages > asbio.
• Type book.menu() in the R console.

12. (3 pts) Go to Chapter 6 >Type I and II error. Mac-users and others
wishing to obtain the GUI directly can type: see.typeI II(). Click the
More info widget to learn more about type I and II error and power (you
will need to click at the edge of the widgets).

116



a) What is considered a more serious type of error, type I or II?
b) What are the conventional (most frequently used) levels for α, β, and

1 ´ β?

13. (5 pts) Go to Chapter 6 >Power. Mac-users and others wishing to
obtain the GUI directly can type: see.power.tck(). The top graph shows
a distribution which assumes that H0 is true. This is the one we use to
compute P -values. The lower graph shows power, i.e., the probability of
rejecting H0 when H0 is false.

a) Does power, i.e., 1 ´ β, equal 1 ´ α?
b) Does decreasing α increase or decrease power?
c) Does decreasing σ increase or decrease power?
d) Does increasing n (i.e., sample size) increase or decrease power?
e) Does increasing effect size (i.e., |µ ´ µ0|) increase or decrease power?

Q1 2pts, Q2 4pts, Q3 2pts, Q4 2pts, Q5 1pt, Q6 8pts, Q7 2pts, Q8 2pts, Q9 11pts, Q10 2pts, Q11 7pts, Q12
3pts, Q13 5pts. Total pts: 51.
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7

t-tests

Lab 7 Topics

1. t-distribution

2. The family of t-tests

• Confidence interval for µ, σ2 unknown
• Pooled variance t-test
• Welch t-test
• Paired t-test

t-distribution
If the variance of an underlying normal parent distribution is unknown (and this will generally
be true), then we must estimate σ2 with the sample variance, S2. Now, however, it will be
impossible to derive confidence intervals or test hypotheses concerning the population mean,
µ, using the standard normal distribution. Instead, we must approximate the Z-distribution
using the t-distribution.

Like the standard normal distribution, the t-distribution is symmetric and centered at
zero. In fact, the t-distribution asymptotically converges to the standard normal distribution
as its lone parameter ν (commonly called the degrees of freedom) approaches 8. For smaller
values of ν the t-distribution is platykurtic (flatter) compared to the Z-distribution (Fig 7.1).

If a random variable X follows a t-distribution, its PDF is:

fpxq “
Γ

`

ν`1
2

˘

Γ
`

ν
2

˘

1
?

νπ

ˆ

1 `
x2

ν

˙´
ν`1

2

(7.1)

where ν ą 0, Γ is the so-called gamma function which is a generalization of the factorial
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Figure 7.1. A comparison of (a) the standard normal distribution and (b) t-distributions
with varying values of ν.

function for non-integers, and x P R. If a random variable X follows a t-distribution, we
write this as X „ tpνq.

The t-distribution arises as the sampling distribution of the mean, following z-transformation,
when the standard deviation of the parent distribution is unknown. Specifically, if the parent
distribution X is normal with mean, µ, and an unknown variance, and X is sampled with a
sample size of n, then t˚ will be a random outcome from t-distribution with n ´ 1 degrees
freedom, when

t˚
“

X̄ ´ µ

S{
?

n
. (7.2)

The denominator of Eq. 7.2, S{
?

n, is called the sample standard error. It is an
estimator for the standard deviation of sampling distribution of the mean, σX̄ .

Confidence interval for µ, σ2 unknown
What if we want to calculate a confidence interval for the mean of a normal distribution µ,
but we don’t know σ2? In this case, a p1 ´ αq100% confidence interval for µ can be calculated
as:

X̄ ˘ tp1´pα{2q,n´1q

S
?

n
. (7.3)

where tp1´pα{2q,n´1q indicates the inverse CDF (cumulative distribution function) of a
t-distribution with n ´ 1 degrees of freedom at the lower tailed probability 1 ´ pα{2q. We
multiply this quantile by the sample standard error (Eq. 7.2) to get the margin of error for
the confidence interval.

For any positive integer, n, the gamma function has the form: Γpnq “ pn ´ 1q!. More generally,
Γpzq “

ş8

0 tz´1e´1dt, where z ą 0.
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Example 7.1
We obtain 25 random samples of vascular plant cover at alpine late snowbank sites and

find that the mean cover of the grass Agrostis variabilis is 14.6%. We do not know σ, but
from our sample we find that the sample standard deviation, s, equals 12.25%. We calculate
a 95% confidence interval for µ as follows:

x̄ ˘ tp1´pα{2q,n´1q

s
?

n
“

14.6 ˘ tp1´p0.05{2q,24q

12.25
?

25
“

14.6 ˘ tp0.975,24q

12.25
5 “

14.6 ˘ 2.063899 ¨
12.25

5 “

14.6 ˘ 5.056551 “

p9.543449, 19.656551q

We must obtain the inverse CDF outcome 2.063899 using Excel or R.

To calculate t inverse CDF quantiles in Excel we use the function =T.INV. It requires two
arguments:

1. A lower tailed probability of interest. In our case, this be 1 ´ α{2 “ 0.975.

2. The degrees of freedom, ν. For the current example this will be n ´ 1 “ 24.

=T.INV(0.975, 24) = 2.063899.

In R we use the function qt to get t quantiles. The function has the same arguments as
=T.INV.

qt(0.975, 24)

[1] 2.063899

We can use the R function ci.mu.t to complete all of the calculations for us.
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ci.mu.t(xbar = 14.6, n = 25, sd = 12.25, conf = 0.95, summarized = T)

95% t Confidence interval for population mean
Estimate 2.5% 97.5%

14.600000 9.543449 19.656551

We are 95% confident that the true mean, µ, is between 9.543449 and 19.656551.

■

The mean difference of two normal random variables
If X and Y are normally distributed random variables, with X „ NpµX , σ2

Xq and Y „

NpµY , σ2
Y q, then, from Lab 5, we know that:

X ´ Y „ NpµX ´ µY , σ2
X ` σ2

Y q.

Additionally, if X is sampled with sample size nX and Y is sampled with sample size nY ,
it follows, from our knowledge of the sampling distribution of the mean (Ch. 5), that:

X̄ ´ Ȳ „ N

ˆ

µX ´ µY ,
σ2

X

nX

`
σ2

Y

nY

˙

. (7.4)

Further, given the tenets of the central limit theorem (Lab 5), it follows that if X and Y
are sampled with sufficiently large sample sizes, then, regardless of the form of the parental
distributions,

X̄ ´ Ȳ
d

Ñ́ N

ˆ

µX ´ µY ,
σ2

X

nX

`
σ2

Y

nY

˙

. (7.5)

Finally, because

σ2
X̄´Ȳ “

σ2
X

nX

`
σ2

Y

nY

, (7.6)

it follows that

σX̄´Ȳ “

d

σ2
X

nX

`
σ2

Y

nY

. (7.7)

The Family of t-tests
The so-called family of t-tests constitute the most common set of approaches for making
inference to mean difference of two normal random variables when the variances of those
distributions are unknown. Eqs. 7.2 - 7.7 form the mathematical basis for all t-tests for
comparing µX to µY .
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Structuring of t-test hypotheses
We can test any one of three sets of hypotheses below using the family of t-tests. For each of
the hypothesis sets D0 denotes the hypothesized (null) difference for µX ´ µY . Generally,
D0 “ 0.

1. For a two-tailed test we have:

H0 : µX ´ µY “ D0

HA : µX ´ µY ‰ D0

Under the usual case that D0 “ 0 we have:

H0 : µX “ µY

HA : µX ‰ µY

2. For an upper-tailed test (µX ą µY ), we have:

H0 : µX ´ µY ď D0

HA : µX ´ µY ą D0

Under the usual case that D0 “ 0, we have:

H0 : µX ď µY

HA : µX ą µY

3. For an lower-tailed test (µX ă µY ), we have:

H0 : µX ´ µY ě D0

HA : µX ´ µY ă D0

Under the usual case that D0 “ 0, we have:

H0 : µX ě µY

HA : µX ă µY

Pooled variance t-test
If the variances of the two populations under comparison, X and Y , can be assumed to be
approximately equal, then we would use a pooled variance t-test (also called Student’s
t-test) to make inference to µX ´ µY .

A natural estimator for the mean of the distribution of mean differences in Eqs. 7.4 and
7.5 is simply the difference in sample means:

̂µX ´ µY “ X̄ ´ Ȳ , (7.8)

As noted in Lab 5, in some texts H0 is given as H0 : µ “ µ0 for lower-tailed and upper-tailed tests.
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where the hat sign ̂µX ´ µY indicates: “the estimator for µX ´ µY .” If we can assume
that the variances of X and Y are equal. That is, if we can assume σ2

X “ σ2
Y “ σ2

pool in Eq.
7.7, then

σX̄´Ȳ “

d

σ2
pool

nX

`
σ2

pool

nY

“

d

σ2
pool

ˆ

1
nX

`
1

nY

˙

“ σpool

d

ˆ

1
nX

`
1

nY

˙

.

(7.9)

The estimator for the pooled variance, σ2
pool, is the called the mean squared error or

MSE:

σ̂2
pool “ MSE “

pnX ´ 1qS2
X ` pnY ´ 1qS2

Y

nX ` nY ´ 2 . (7.10)

Thus, the estimator for σpool is
?

MSE. Combining the t-statistic framework of Eq. 7.2
with Eqs. 7.8, 7.9, and 7.10 we obtain the formula for the pooled variance t-test test statistic:

t˚
“

pX̄ ´ Ȳ q ´ D0
?

MSE

c

´

1
nX

` 1
nY

¯

. (7.11)

where, as noted above, D0 is the hypothesized (null) difference for µX ´ µY . Generally,
D0 “ 0.

Calculating P -values for the pooled variance t-test

If H0 is true, and assumptions for the test hold, then t˚ will be a random outcome from a
t-distribution with nX ` nY ´ 2 degrees of freedom.

• For a two-tailed test the P -value is: 2 ¨ P pT ě |t˚|q.

• For an upper-tailed test the P -value is: P pT ě t˚q.

• For a lower-tailed test the P -value is: P pT ď t˚q.

where T „ tpnX ` nY ´ 2q.

Example 7.2
An experiment was conducted to evaluate the effectiveness of a treatment for tapeworm

in the stomachs of sheep. A random sample of 24 worm-infected lambs was randomly divided
into two groups. Twelve of the lambs were injected with am anti-tapeworm drug, and the
other 12 remained untreated. After a six month period the lambs were slaughtered and the
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worm counts were recorded (Table 7.1). Test whether the mean number of tapeworms in the
treated sheep is less than the number in the untreated sheep. Use α “ 0.05

Table 7.1. Data for treated and untreated sheep in Example 2.

Drug-treated sheep 18 43 28 50 16 32 13 35 38 33 6 7
Untreated sheep 40 54 26 63 21 37 39 23 48 58 28 39

1. We designate α “ 0.05. We have the following hypotheses:

H0 : µT ě µU

HA : µT ă µU

where µT and µU denote the population means for the treated and untreated sheep,
respectively.

2. To calculate the test-statistic, we first compile summary statistics. We have: x̄T “ 26.58;
x̄U “ 39.67; S2

T “ 206.07; S2
U “ 192.06. For MSE we have:

?
MSE “

d

pnT ´ 1qs2
T ` pnU ´ 1qs2

U

nT ` nU ´ 2 “

c

11 ¨ 206.27 ` 11 ¨ 192.06
22 “ 14.113

Thus, the test statistic is:

t˚
“

px̄T ´ x̄U q ´ D0
?

MSE

c

´

1
nT

` 1
nU

¯

“
p26.58 ` 39.67q ´ 0

14.113 ¨
a

1{6
“ ´2.2719

3. To calculate the P -value, we need to first consider the form of the alternative hypothesis
and the degrees of freedom in the null t´distribution. We have a two-tailed test.
According to the Calculating P -values subsection for this test we calculate the P -value
as P pT ď t˚q where T „ tpnT ` nU ´ 2q. Because nT “ nU “ 12, T „ tp22q. We can
calculate the P -value using either the function T.DIST from Excel or pt from R.

=T.DIST requires three arguments:

• A t-distribution outcome. For the current example this will be the test statistic
outcome t˚ “ ´2.2719

• The degrees of freedom, ν. For the current example this will be nT ` nU ´ 2 “ 22.
• Whether or not you want the CDF (TRUE) or the PDF (FALSE).

Thus, we have: =T.DIST(-2.2719, 22, TRUE) = 0.01661.
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The function pt represents the t-distribution CDF. It has two arguments which are
identical to the first two arguments of =T.DIST. Thus, we have:

pt(-2.2719, 22)

[1] 0.01661012

4. Because P ă 0.05 we reject H0 and conclude that the treatment reduces tapeworms
compared to untreated sheep.

Below is code to run the entire test “by hand” using R. First we bring in the data.

sheep <- read.csv(file.choose())

In the next code chunk we calculate the test statistic. Note that the fist column in the
sheep dataset (sheep[,1]) contains tapeworm counts, and the second column (sheep[,2])
contains corresponding treatment assignments (T and U). Thus, the first two columns serve
as response and explanatory variables for the experiment, respectively.

means <- tapply(sheep[,1], sheep[,2], mean)
means

T U
26.58333 39.66667

vars <- tapply(sheep[,1], sheep[,2], var)
vars

T U
206.2652 192.0606

ns <- tapply(sheep[,1], sheep[,2], length)
ns

T U
12 12

MSE <- (vars[1]*(ns[1]-1) + vars[2]*(ns[2]-1))/(sum(ns)-2)
t.star <- (means[1] - means[2])/(sqrt(MSE)*sqrt(1/ns[1]+1/ns[2]))
t.star

T
-2.270857
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Here we calculate the P -value:

pt(t.star, ns[1]+ns[2]-2)

T
0.01664659

Note that means[1] - means[2] in the calculation of t.star corresponds to X̄T - X̄U ,
and thus agrees with the ordering of µT and µU in the hypotheses.

We can use the R function t.test to do everything for us.

t.test(sheep[, 1] ˜ sheep[, 2], var.equal = T, alternative = "less")

Two Sample t-test

data: sheep[, 1] by sheep[, 2]
t = -2.2709, df = 22, p-value = 0.01665
alternative hypothesis: true difference in means between group T and group U is less than 0
95 percent confidence interval:

-Inf -3.190165
sample estimates:
mean in group T mean in group U

26.58333 39.66667

The code sheep[,1] „ sheep[,2] means that tapeworm numbers in sheep[,1] are
assumed to be a function of the of the categorical levels in sheep[,2]. We can use this
sort of statement in t.test when the response and explanatory variables are in separate
columns., We specify var.equal = T to get a pooled variance t-test. By default var.equal
= F. We define the alternative hypothesis with the argument alternative. Choices are
"less", "greater", and "two.sided". By default alternative = "two.sided".

■

The function t.test can also be run by inputting vectors of observations from hypothesized populations
separately as the first two arguments. For example, if sheep[,1] and sheep[,2] represented tapeworm
counts for the treated and untreated sheep, respectively, we would specify the test as: t.test(sheep[,1],
sheep[,2],....).

Care must be taken in t.test to insure that the test corresponds to the original hypotheses. When
using „ to separate response and explanatory variables in one-tailed tests R will automatically order
hypothesized populations by the alphanumeric order of their names in the explanatory variable. Thus, for our
example, R will assume that the alternative hypothesis has the form: HA: µp1st alphanumeric nameq ă

µp2nd alphanumeric nameq. Recall that the treatment names in sheep[,2] were T and U. We are okay
because our alternative was: HA : µT ă µU , and T comes before U in the alphabet.

Also in the output is a one-side (lower-tailed) confidence interval the true mean difference, µT ´ µU . Thus,
we are 95% confident that the true mean difference is less than -3.190165. We will not explicitly consider
one-tailed confidence intervals in this lab.
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Pooled variance t-test assumptions

The pooled variance t-test has three assumptions which we will formally consider in Lab 8.

1. Parental distributions X and Y are normally distributed.

2. Observations are independent.

3. Parental distributions have equal variances. Heteroscedasticity(unequal population
variances) may result in untrustworthy pooled variance t-test results, particularly if
sample sizes are unequal.

Welch t-test
If we cannot assume that the variances of X are Y equal, we can still test for hypothesized
differences in µX ´ µY using the Welch t-test. The Welch test statistic is:

t˚
“

pX̄ ´ Ȳ q ´ D0
b

S2
X

nX
`

S2
Y

nY

(7.12)

The denominator in Eq 7.12 is an estimator for Eq. 7.7. Unlike the pooled variance test
statistics, Welch test statistics will not exactly follow a t-distribution under H0. Instead we
identify an approximate null t-distribution using the Satterthwaite procedure to compute
the degrees of freedom. This will be ν in Eq. 7.13.

ν “

´

S2
X

nX
`

S2
Y

nY

¯2

pS2
X {nXq

2

nX ´1 `
pS2

Y {nY q
2

nY ´1

(7.13)

The Satterthwaite procedure will generally produce a non-integer solution for the degrees
of freedom.

Calculating P -values for the Welch t-test

If H0 is true, and assumptions for the test hold, then t˚ will be a random outcome from a
t-distribution with approximately ν degrees of freedom.

• For a two-tailed test the P -value is: 2 ¨ P pT ě |t˚|q.

• For an upper-tailed test the P -value is: P pT ě t˚q.

• For a lower-tailed test the P -value is: P pT ď t˚q.

where T „ tpνq.

Example 7.3
An agricultural experimental station is testing the effect of pesticides on insect counts

(Table 7.2). A researcher wants to know if there is any difference in insect counts between
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sprays A and E. We know that we cannot assume equal variances for A and E and will use
α “ 0.05.

Table 7.2. Data for sprays A and E in Example 3.

Spray A 10 7 20 14 14 12 10 23 17 20 14 13
Spray E 3 5 3 5 3 6 1 1 3 2 6 4

1. We designate α “ 0.05. We have the following hypotheses:

H0 : µA “ µE

HA : µA ‰ µE

where µA and µE denote the population means for spray A and E, respectively.

2. To calculate the test-statistic, we first compile summary statistics. We have: x̄A “ 14.5;
x̄E “ 3.5; S2

A “ 22.27; S2
E “ 3. Thus, the test statistic is:

t˚
“

px̄A ´ x̄Eq ´ D0
b

S2
A

nA
`

S2
E

nE

“
p14.5 ´ 3.5q ´ 0

b

22.27
12 ` 3

12

“ 7.5798.

3. To calculate the P -value, we need to first consider the form of the alternative hypothesis
and the degrees of freedom in the null t´distribution. We have a two-tailed test.
According to the Calculating P -values subsection for this test we calculate the P -value
as 2 ¨ P pT ě |t˚|q where T „ tpnT νq. We calculate ν using the Satterthwaite procedure.
We have:

ν “

´

s2
X

nX
`

s2
Y

nY

¯2

ps2
X {nXq

2

nX ´1 `
ps2

Y {nY q
2

nY ´1

“

`22.7`3
12

˘2

p22.7{12q2`p3{12q2

11

“ 13.91046.

Thus, the null distribution is T „ tp13.91q. The P -value is:

2 * pt(7.579791, 13.91046, lower.tail = FALSE)

[1] 2.654553e-06

4. Because P ă 0.05 we reject H0 and conclude that the mean insect counts from the
spray types differ.

Here is code to run the entire test “by hand” using R. First we bring in the data.

insect <- read.csv(file.choose())
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#test statistic
means <- tapply(insect[,1], insect[,2], mean)
means

A E
14.5 3.5

vars <- tapply(insect[,1], insect[,2], var)
vars

A E
22.27273 3.00000

ns <- tapply(insect[,1], insect[,2], length)
ns

A E
12 12

t.star <- (means[1] - means[2])/sqrt(vars[1]/ns[1]+vars[2]/ns[2])
t.star

A
7.579791

#Degrees of freedom
num <- (vars[1]/ns[1] + vars[2]/ns[2])ˆ2
den <- (vars[1]/ns[1])ˆ2/(ns[1]-1) + (vars[2]/ns[2])ˆ2/(ns[2]-1)
nu <- num/den
nu

A
13.91046

#P-value
2 * pt(t.star, nu, lower.tail = FALSE)

A
2.654548e-06

Once again we can use t.test to do everything for us.
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t.test(insect[,1] ˜ insect[,2])

Welch Two Sample t-test

data: insect[, 1] by insect[, 2]
t = 7.5798, df = 13.91, p-value = 2.655e-06
alternative hypothesis: true difference in means between group A and group E is not equal to 0
95 percent confidence interval:

7.885546 14.114454
sample estimates:
mean in group A mean in group E

14.5 3.5

■

Welch t-test assummptions

The Welch t-test has two assumptions which we will formally consider in Lab 8.

1. Parental distributions X and Y are normally distributed.

2. Observations are independent.

Paired t-test
If observations can be viewed as blocked or paired for the two hypothetical populations being
compared, then we should test for hypothesized mean differences using a paired t-test.
Pairing will result in a lack of independence in observations making application of other
t-tests inappropriate.

In a paired t-test the response variable is the difference, D, between observations that
are paired. Thus, if X and Y are normal, then D „ NpµD, σ2

Dq. . The test statistic for the
paired t-test is:

t˚
“

X̄D ´ D0

SD{
?

n
(7.14)

where X̄D and SD indicate sample mean and sample standard deviation of the paired
differences and n indicates the number of pairs.

Calculating P -values for the paired t-test

If H0 is true, and assumptions for the test hold, then t˚ will be a random outcome from a
t-distribution with n ´ 1 degrees of freedom.

• For a two-tailed test the P -value is: 2 ¨ P pT ě |t˚|q.
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• For an upper-tailed test the P -value is: P pT ě t˚q.

• For a lower-tailed test the P -value is: P pT ď t˚q.

where T „ tpn ´ 1q.

Example 7.4
The ease or difficulty one has losing weight might be dependent on genetic makeup. To

compare two different weight loss programs (X and Y), and to control for the confounding
potential of genetics, 12 pairs of identical twins of similar weight were studied. Each pair
of twins were randomly assigned to program X or Y (Table 7.3). Test to see if there is any
difference in weight loss between the two programs. Use α “ 0.05.

Table 7.3. Data for weight loss programs X and Y in Example 4.

Program X 12.4 10.3 6.8 11.5 10.4 9.8 5.7 9.5 9.8 8.0 7.1 10.9
Program Y 12.8 10.0 8.7 11.9 10.6 9.7 7.9 10.8 11.6 8.8 9 11.1
D = Y - X 0.4 -0.3 1.9 0.4 0.2 -0.1 2.2 1.3 1.8 0.8 1.9 0.2

1. We designate α “ 0.05. We have the following hypotheses:

H0 : µY “ µX

HA : µY ‰ µX

where µX and µY denote the population means for weight loss programs X and Y,
respectively. Note that the hypothesis structure above is equivalent to testing the null
H0: µD “ 0.

2. To calculate the test-statistic we calculate the mean and variance of the differences, Y -
X. We have: x̄D “ 0.89167; s2

D “ 0.78083; n “ 12. Thus, the test statistic is:

t˚
“

x̄D ´ D0

sD{
?

n
“

0.89167
0.88365{

?
12

“ 3.496.

3. To calculate the P -value, we need to first consider the form of the alternative hypothesis
and the degrees of freedom in the null t´distribution. We have a two-tailed test.
According to the Calculating P -values subsection for this test we calculate the P -value
as 2 ¨ P pT ě |t˚|q where T „ tpn ´ 1q. Thus, the null distribution is T „ tp11q. The
P -value is:

2 * pt(3.496, 11, lower.tail = FALSE)

[1] 0.005005409

4. Because P ă 0.05 we reject H0 and conclude that weight loss differs for programs X
and Y.
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Below is code to run the entire test “by hand” using R. First we bring in the data.

weight <- read.csv(file.choose())

D <- weight$Y - weight$X
mean.D <- mean(D)
mean.D

[1] 0.8916667

var.D <- var(D)
var.D

[1] 0.7808333

n <- 12

t.star <- (mean.D)/(sqrt(var.D)/sqrt(n))
t.star

[1] 3.495538

Note, I can access a column of data in an R dataframe by giving the name of the dataframe
followed by a dollar sign ($) and the column name. Here we calculate the P -value:

2 * pt(t.star, n-1, lower.tail = F)

[1] 0.005009484

Once again we can use t.test to do everything for us.

t.test(weight$Y, weight$X, paired = T)

Paired t-test

data: weight$Y and weight$X
t = 3.4955, df = 11, p-value = 0.005009
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
0.3302237 1.4531097

sample estimates:
mean difference

0.8916667

The columns in weight do not represent response and explanatory variables like the sheep
and insect datasets. Thus, I specify the paired observations in weight$Y and weight$X as
the first two arguments in t.test. I put weight$Y first and weight$X second in t.test to
replicate the result I got “by hand”. Specifically, I calculated D as Y - X (not as X - Y).
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■

Paired t-test assummptions

The paired t-test has two assumptions which we will formally consider in Lab 8.

1. The underlying distribution of paired differences is normally distributed.

2. paired differences are independent, although raw observations will not be independent.

Assignment 7

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, fig-
ures and computer output you include adhere to class standards (see Syllabus).

t-distribution

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

1. (2 pts) From the book menu in asbio go to Ch 3 >Pdf depiction >

t. Mac-users and others who wish to obtain the GUI directly can type
see.t.tck().

a) How many parameters does the t-distribution have?
b) As the degrees of freedom increase does the t-distribution converge to

the standard normal distribution?
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The family of t-tests

2. (8 pts) From the book menu in asbio go to Ch 6 >t-test mechanics or
type see.ttest.tck().

a) What do you think the two normal distributions represent?
b) What do think the numbers (ones and twos) inside the distributions

are?
c) Why are the degrees of freedom for the t-distribution non-integers when

you click off Variance equal widget?
d) Set the populations to have EQUAL means. In this case the null

hypothesis is true. Resample from the populations repeatedly (ą 30
times) by clicking on the Refresh button. Is it still possible to reject
H0 at α “ 0.05? What is this called?

Pooled variance t-test

3. (4 pts) A pollution control inspector suspected that a riverside community
was releasing semi-treated sewage into a river. He suspects that the
nutrients from the dumping are causing the river to become eutrophic. He
records dissolved O2 readings in ppm for 15 random locations above and
below the riverside community. The riverside O2 data are in the Canvas
data folder.

a) Calculate 95% confidence intervals for the true mean dissolved O2 levels
for both above and below locations using the R function ci.mu.t from
asbio. To accomplish this you will need to import the riverside O2
dataset and subset the dO2 data (column 1) using the location column
(column 2). The code below will do this and calculate the above and
below town confidence intervals. Use snapshots to show results.

dissO2 <- read.csv(file.choose())
above <- dissO2[,1][dissO2[,2] == "above"]
below <- dissO2[,1][dissO2[,2] == "below"]
ci.mu.t(above)
ci.mu.t(below)
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b) Correctly interpret the result from (a)

4. (12 pts) For the riverside O2 data, test if the O2 below the town is lower
(more eutrophic) than the O2 above the town. Assume that the variances
are equal. Use α “ 0.05.

a) State H0, HA, and α.
b) Go through the steps necessary to calculate the pooled variance t-test

test statistic.
• Calculate sample means, variances, and sample sizes for both hy-

pothesized populations. Use snapshots to show results.
• Calculate MSE, show results using shapshots.
• Calculate t˚, show results using snapshots.

c) Go through the steps necessary to calculate the p-value.
• Calculate the degrees of freedom.
• Calculate the P -value, show results using snapshots.

d) State your conclusions. Do you reject or fail to reject H0?
e) Verify your answer in R using t.test. Show a snapshot of your result.

Welch t-test

5. (12 pts) PCB’s (polychlorinated biphenyls) are a group of synthetic oil-like
chemicals whose toxicity was first recognized in the 1970’s. Until then
they were widely used as insulation in electrical equipment, particularly
transformers. PCB concentrations in heron eggs helps researchers quantify
bioaccumulation of PCBs in ecosystems. Thirteen sites in the Great Lakes
were selected for a study to quantify PCB concentrations in 1982 and 1996.
At each site 9-13 heron eggs were randomly collected and tested for PCBs.
Test to see if 1996 levels were lower than 1982 levels. Use a Welch test,
and use α “ 0.01. The data are in the Canvas data folder.

a) State H0, HA, and α.
b) Go through the steps necessary to calculate the Welch t-test test statis-

tic.
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• Calculate sample means, variances, and sample sizes for both hy-
pothesized populations. Use snapshots to show results.

• Calculate t˚, show results using snapshots.
c) Go through the steps necessary to calculate the p-value.

• Calculate the Satterthwaite degrees of freedom, show results using
snapshots.

• Calculate the P -value, show results using snapshots.
d) State your conclusions. Do you reject or fail to reject H0?
e) Verify your answer in R using t.test. Show a snapshot of your result.
f) Importantly, the same nests were used in 1982 and 1996. Does the

independence assumption for this test appear to be violated? Why?
What can you do about it?

Paired t-test

6. (12 pts) Ten hypertensive patients (diastolic blood pressure between 90 -
115 mmHg) were studied before and after 18 months on an antihypertensive
treatment. Salt sensitivity (SENS) of the ten patients was evaluated at
these two times. Test to see if the salt sensitivity was different after
treatment. Use α “ 0.05. The data are in the Canvas data folder.

a) Are the before and after observations independent? Why or why not?
b) State H0, HA, and α.
c) Go through the steps necessary to calculate the paired t-test test

statistic.
• Calculate sample mean, variance, and sample size for the paired

differences. Use snapshots to show results.
• Calculate t˚, show results using snapshots.

d) Go through the steps necessary to calculate the p-value.
• Calculate the degrees of freedom.
• Calculate the P -value, show results using snapshots.

e) State your conclusions. Do you reject or fail to reject H0?
f) Verify your answer in R using t.test. Show a snapshot of your result.
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Appendix: R-code used in this lab
This lab focused on t-tests and frequently used the function t.test. Arguments from t.test
can be modified to address situations in which:

• Populations variances are assumed to be approximately equal: p1{2 ă sX{sY ă 2q

var.equal = T, or unequal: (default) var.equal = F.

• Samples are paired: paired = T, or unpaired: (default) paired = F.

• Specific alternative hypotheses are required. For example, lower-tailed: alternative =
"less", upper-tailed: alternative = "greater", and two-tailed (default): alternative
= "two.tailed".

The t.test function can be used with two data formats: 1) data from hypothesized
population are in separate columns (Table 7.4) and 2) data are in columns representing a
quantitative response variable and a categorical explanatory variable with two categorical
levels (Table 7.5). Care must be taken in both situations to insure that the correct hypotheses
are being tested.

Table 7.4. Illustrative dataset 1. Plant
biomass given high and low nitrogen treat-
ments.

High N Low N
10.2 12.1
21.2 12.3
13.3 11.1
12.5 8.2
10 7.6

Table 7.5. Illustrative dataset 2. Plant
biomass given high and low nitrogen treat-
ments.

Biomass Treatment
10.2 High N
21.2 High N
13.3 High N
12.5 High N
10 High N
12.1 Low N
12.3 Low N
11.1 Low N
8.2 Low N
7.6 Low N

In data format one, data from the hypotheses are specified as the first two arguments
t.test. The function then assumes that the first and second argument constitute the
arrangement of treatments in hypotheses. For instance, to consider the lower-tailed alternative
hypothesis HA : µLo N ă µHi N, I would specify:

with(data1, t.test(Lo.N, Hi.N, alternative = "less"))

Whereas, to consider the upper-tailed alternative hypothesis HA : µHi N ą µLo N (the
equivalent test), I would specify:

Q1 2pts, Q2 8pts, Q3 4pts, Q4 12pts, Q5 12pts, Q6 12pts. Total pts: 50.
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with(data1, t.test(Hi.N, Lo.N, alternative = "greater"))

In data format two, data are specified as a formula, Y „ X, where Y and X are response
and explanatory data objects, respectively. In this case, the alphanumeric ordering of levels
in X will constitute the arrangement of treatments in hypotheses. For instance, to consider
the upper-tailed alternative hypothesis HA : µHi N ą µLo N, I would specify:

with(data2, t.test(Biomass ˜ Treatment, alternative = "greater"))

The equivalent test, HA : µLo N ă µHi N cannot be specified because Hi N will be ordered
before Lo N alphanumerically (because H occurs before L in the alphabet).
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8

Assumptions and Diagnostics for
t-tests

Lab 8 Topics

1. Assumptions and Diagnostics for t-tests.

• Normality of Parent Distributions.
• Homoscedaticity
• Independence of Observations

2. Log-transformation

Last week we were introduced to three kinds of t-tests: the pooled variance t-test, the
Welch t-test and the paired t-test. These tests have the following assumptions:

1. All t-test procedures assume normal distributions for the parent populations under
consideration. For practical purposes, however, this assumption is only really important
for small sample sizes (n ă 30). This is true because t-tests are concerned with the
sampling distribution of mean differences. This distribution will converge to normality
under the central limit theorem if sample sizes are large.

2. The pooled variance t-test assumes equal variances (homoscedasticity). The term for
unequal variances is heteroscedasticity.

3. All three t-tests assume independence of analyzed responses. For the paired t-test,
the independence assumption concerns the differences of paired (blocked) observations.
Raw paired observations in a matched pair experimental design are unlikely to be
independent. We will not formally address independence diagnostics in this lab, but we
will consider this topic in upcoming labs.
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P -values from t-tests will be exact if the parent populations are normal and sample
sizes from those populations are identical. t-procedures are reasonably robust against both
non-normality and unequal variances violations when the samples are nearly the same size,
particularly if sample sizes are large. Thus, whenever possible, treatments should have
equal (balanced) sample sizes. When the parent populations being compared have different
distributional shapes, larger sample sizes will be needed for reliable P -values.

Diagnostics for Homoscedasticity

F -distribution
the F -distribution is often used as a null distribution in null hypothesis tests for homoscedas-
ticity. If a random variable X follows an F -distribution, it will have the PDF:

fpxq “
Γ

`

ν1`ν2
2

˘

Γ
`

ν1
2

˘

Γ
`

ν2
2

˘ ¨

ˆ

ν1

ν2

˙

ν1
2

¨ xp
ν1
2 ´1q ¨

ˆ

1 `
ν1

ν2
x

˙´p
ν1`ν2

2 q

(8.1)

where x ą 0, ν1 ą 0, ν2 ą 0, and Γp.q is the gamma function (Lab 7). The F - distribution
has two parameters, ν1 and ν2. These are called the numerator degrees of freedom and
denominator degrees of freedom, respectively. Thus, if a random variable X follows an
F -distribution, we would denote this as X „ F pν1, ν2q. The distribution F p3, 2q is shown in
Fig 8.1.
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Figure 8.1. The PDF (left) and CDF (right) of the distribution F p3, 2q.
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Note that unlike the normal and t-distributions, which are defined between ´8 and 8

the F -distribution is only defined between 0 and 8.

F -test
An F -test can be used to test for the equality of variances, σ2

2 and σ2
1 from two normal

distributions. The test has the hypotheses:

H0 : σ2
1 “ σ2

2

HA : σ2
1 ‰ σ2

2

The test statistic for the F -test is:

F ˚
“

S2
1

S2
2

(8.2)

where S2
1 is the larger of the sample variances taken from the two parent populations.

Under this framework F ˚ ě 1. If H0 is true, and assumptions for the test are valid, F ˚ will
follow an F -distribution with n1 ´ 1 numerator degrees of freedom and n2 ´ 1 denominator
degrees of freedom. The P -value is calculated as 2 ¨ P pX ě F ˚q where X „ F pn1 ´ 1, n2 ´ 1q.
F -statistics much greater than one would suggest that H0 is false.

The F -test assumes normality of the parent distributions being compared and is highly
sensitive to violations of this assumption.

Levene’s test
Several null hypothesis tests can assess homoscedasticity without the assumption of normality
for the the parent distributions. One example is the modified Levene’s test. The test
also allows comparison two or more variances at a time. Given r population variances,
i “ 1, 2, 3, . . . , r, we are testing the hypotheses:

H0 : σ2
1 “ σ2

2 “ σ2
3 . . . “ σ2

r

HA : At least one σ2
i not equal to the others.

The modified Levene’s test is considered a better test for homoscedasticity than the F -test
because of its lack of normal assumptions for the parent distributions. We will not worry
about the mechanics of the modified Levene’s test here.

Example 8.1
An agricultural field station is curious about the efficacy of two types of spray in controlling

insects (Table 8.1). The investigators would like to use a pooled variance t-test because it
has more power than the Welch t-test. Thus, they would like to know whether their data
meet the pooled variance t-test assumption of homoscedasticity.

The F -test can also be extended to cases with more than two variances.
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Table 8.1. Data for sprays 1 and 2 in Example 1.

Spray 1 4 5 3 4 2 1 6 2 3 4 3 4 5 2
Spray 2 1 1 3 1 2 2 3 3 5 2 4 4 3 2

We will consider the F -test first. We proceed with the four steps of H0 hypothesis testing.

1. State H0, HA and α. We will use α “ 0.05, and test the following hypotheses:

H0 : σ2
1 “ σ2

2

HA : σ2
1 ‰ σ2

2

2. Calculate the test statistic. To calculate F ˚ we bring in the spray data.

spray <- read.csv(file.choose())

and calculate the sample variances and sample sizes.

vars <- tapply(spray[,1], spray[,2], var)
vars

1 2
1.956044 1.494505

ns <- tapply(spray[,1], spray[,2], length)
ns

1 2
14 14

We find:
F ˚

“
1.956044
1.494505 “ 1.308824.

3. We calculate the P -value using two times the upper tail of F p13, 13q.

F.star <- vars[1]/vars[2]
2 * pf(F.star, 13, 13, lower.tail = F)

1
0.6346121

We can verity our results using the function var.test.
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var.test(spray[,1] ˜ spray[,2])

F test to compare two variances

data: spray[, 1] by spray[, 2]
F = 1.3088, num df = 13, denom df = 13, p-value = 0.6346
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4201633 4.0770320

sample estimates:
ratio of variances

1.308824

4. We fail to reject H0 and conclude that the underlying variances, σ2
1 and σ2

2, are equal.

Next, we will apply the modified-Levene’s test. We consider the same hypotheses as the
F -test with the modified Levene’s test. The function modlevene.test from asbio can be
used to run the modified Levene’s test in R:

library(asbio)
modlevene.test(spray[,1], spray[,2])

Modified Levene's test of homogeneity of variances

df1 = 1, df2 = 26, F = 0.29213, p-value = 0.59346

The test here provides additional support for H0. Thus, the investigators conclude that
use of the pooled variance t-test is justified, given validity of the assumption of normality for
the underlying populations.

■

Diagnostics for Normality

Normal probability plot
One tool for diagnosing population normality is the normal probability plot also called
a normal quantile plot. If data are sampled from a normal distribution, then there will
be a certain pattern to the data distribution. For instance, according to the empirical rule
approximately 68% of the data should be one standard deviation from the mean, 95% of
the data should be two standard deviations from the mean, and 99.7% of the data should
be within three standard deviations of the mean. A normal probability plot examines the
relationship between the way the data are actually distributed (the sample quantiles) and
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the way the data would be distributed under normality (the theoretical quantiles). If
data are normally distributed, there should be a strong linear relationship between these
outcomes (all points should be near a linear fit line). The qqnorm and qqline provide normal
probability plots and normal probability plot fits in R. The function qq.Plot from asbio can
provide normal probability plotting for multiple datasets.

Shapiro-Wilk test
We can also formally test the null hypothesis of normality.

H0 : The underlying population is normally distributed.

HA : The underlying population is not normally distributed.
The most frequently used test for these hypotheses is the Shapiro-Wilk test. We will not

address the mechanics for this test here. The function shapiro.test runs the Shapiro-Wilk
test in R.

Example 8.2
We will apply normal diagnostics to the insect spray data from Example 1. A normal

probability plot for both spray types in shown in Fig 8.2.
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qq.Plot(spray[,1], spray[,2], col = c("black","gray"), pch = c(1,2))
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Figure 8.2. Normal quantile plots for treatments in the insect counts data set.

Here we apply the Shapiro-Wilks test to observations from spray 1 and 2

shapiro.test(spray[,1][spray[,2]==1])

Shapiro-Wilk normality test

data: spray[, 1][spray[, 2] == 1]
W = 0.9595, p-value = 0.7148
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shapiro.test(spray[,1][spray[,2]==2])

Shapiro-Wilk normality test

data: spray[, 1][spray[, 2] == 2]
W = 0.92276, p-value = 0.2409

For both treatments we fail to reject H0 at α “ 0.05 but, as with the homoscedasticity
tests, this is what we generally want to do! It looks like the investigators will be able to
perform a pooled variance t-test.

■

Log-transformation
If sample sizes are small, sample sizes are highly unequal, and the data are non-normal, then
t-tests should not be used. In addition, if variances are unequal, a pooled variance t-test
cannot be used.

However, data can often be transformed to get it into a required distributional form.
Homoscedasticity is often violated because the treatment variances are proportional to
the treatment means. That is, variances increase with increasing treatment means, and
are hence not equal. An easy fix to this predicament is to log-transform data from the
treatments. This will preserve mean differences between treatments, if any, while equilibrating
the treatment variances.

For the exponential function y “ ax, we call a the base and x the exponent. Logarithms
are the inverse of exponential functions. That is, if y “ ax, then logapyq “ x. For example,
log10 1 “ 0, because 100 “ 1. In a log-transformation, we take the log (generally or loge

or log10) of all the observations and use those outcomes as the new observations. We can
perform log transformations in R using log. By default, log performs loge transformations.

Example 8.3

data <- c(2,4,3,5,20,70,1000)
log(data)

[1] 0.6931472 1.3862944 1.0986123 1.6094379 2.9957323 4.2484952 6.9077553

■
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Assignment 8

Answer all questions in one MS Word document and submit to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, fig-
ures and computer output you include adhere to class standards (see Syllabus).

t-test assumptions and diagnostics

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

1. (11 pts) Go to Ch. 5 > Sampling distributions. Mac-users and others
who wish to obtain the GUI directly can type samp.dist.method.tck().
Under Statistic choose t˚ (2 sample); this will depict the sampling
distribution for the test statistic from a pooled variance t-test.

a) Choose Snapshot, and click Submit. The histograms represent the
sampling distributions of pooled variance t-test statistics. The gray line
is tpn1 ` n2 ´ 2q. This is the correct H0 distribution if H0 is true, and
assumptions for the test are met. The black dotted line is Np0, 1q. The
randomly generated test statistic distribution should closely resemble
tpn1 ` n2 ´ 2q, because H0 is true (by default, both parent populations
are standard normal, and hence have the same mean, 0) and the
assumptions for the test are valid (the parent distributions are normal
with the same variance). Paste the figure into your assignment with an
appropriate caption.

b) Change the first parent distributions to UNIF p´6, 6q by pasting or typ-
ing expression(runif(s.size, -6, 6)) in one of the two parental
distribution widgets. Note that the mean of this parent distribution will
be zero. Let the the other parent distribution remain Np0, 1q. Thus,
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the difference in the population means remains 0 ´ 0 “ 0, and H0
remains true. To facilitate comparisons, change the sample sizes in
the GUI to be c(3,3,10,20) and c(3,5,10,20). Run the function
by clicking Submit. Once again, the resulting histograms represent
the sampling distributions of the t-test test statistics, the gray line is
tpn1 ` n2 ´ 2q and the black dotted line is Np0, 1q. Paste the figure into
your assignment with an appropriate caption.

c) Which test statistic sampling distribution in (b) appears to follow
tpn1 ` n2 ´ 2q most closely? Which test statistic sampling distribution
fits tpn1 ` n2 ´ 2q most poorly? Your possible choices for each question
are: n1 “ n2 “ 3; n1 “ 3, n2 “ 5; n1 “ n2 “ 10; and n1 “ n2 “ 20.

d) Which assumptions for the pooled variance t-test are being violated by
the altering one of the parental distributions in (b)?

e) Do these violations of assumptions appear to be relatively unimportant
for larger, and equal, sample sizes? Why do you think that this is true?

2. (5 pts) Go to Ch. 3 > Pdf depiction and choose F-distribution.
Mac-users and others who wish to obtain the GUI directly can type:
see.F.tck().

a) What is the lower limit and upper limit to the distribution?
b) What is the distribution shape?
c) How many parameters does the distribution have?

3. Soil nitrogen can have a strong effect on plant biomass. Download the
dataset biomass.csv from Canvas. The data consider plant biomass as a
function of high and low soil nitrogen treatments. You want to eventually
run a t-test for the alternative hypothesis that high N sites will have higher
plant biomass than low N sites. First, however, you will have to run some
diagnostics to identify the correct t-test to use (pooled variance t-test or
Welch test, depending on the validity of the homoscedasticity assumption)
and to determine if you can even use a t-test (by diagnosing normality).
For all components below, demonstrate your work, when necessary, using
snapshots.

a) (10 pts) perform diagnostic checks for homoscedasticity for the high
and low N treatments.
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i) State hypotheses appropriate for null hypothesis tests for ho-
moscedasticity for two parent populations (see section describing
F -tests).

ii) Use the F -test to test the null hypothesis of homoscedasticity.
• Calculate the F -statistic “by hand” using R or Excel to help.
• Calculate P -value for the F -test “by hand” using pf in R or

=F.DIST in Excel.
• State your conclusions.
• Check your result in R using var.test (see Example 1).

iii) Recheck your results from (ii) using the modified Levene’s test.
Run the test using the function modlevene.test from asbio (see
Example 1).

iv) State your conclusions.
v) What advantage does the modified Levene’s test have over the

F -test?
b) (8 pts) Perform diagnostic checks for normality for the plant biomass

data.
i) Make histograms and or normal quantile plots for both the high

N and low N treatments.
ii) State hypotheses appropriate for the Shapiro-Wilks test for nor-

mality (see section describing the Shapiro-Wilks test).
iii) Run Shapiro’s test using shapiro.test.
iv) State your conclusions.

c) (5 pts) Given results from (a) and (b) conduct the appropriate t-test.
i) State the correct t-test hypotheses (see Lab 7).

ii) Run the test using t.test.
iii) State your conclusions.

4. (5 pts) We want to test if three methods for measuring soil percent nitrogen
differ with respect to their variability: “Are some methods more precise
than others?” We have three methods, A, B and C. The data can be found
in the data folder for this week in Canvas, under the name N methods.csv.

a) State the correct null and alternative hypotheses. See example shown for
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the modified Levene’s test when there are more than two hypothesized
populations.

b) Run the test in R using modlevene.test. Use snapshots to show work.
c) What are your conclusions?

Log-transformation

5. (7 pts) Download the dataset height.csv describing plant height (in cm)
as a function of high and low soil N.

a) Provide hypotheses appropriate for null hypothesis tests for homoscedas-
ticity for two parent populations.

b) Run Levene’s test for plant height with respect to high and low N
treatments. Use snapshots to show work.

c) What would be a good transformation so that the variances will be
equal but mean differences will still be present?

d) Perform the transformation and run the Levene’s test on the transformed
data. Use snapshots to show work.

e) Discuss your results. Which dataset had more evidence of homoscedas-
ticity?

Q1 11pts, Q2 5pts, Q3a 5pts, Q3b 5pts, Q3c 8pts, Q4 5pts, Q5 7pts. Total pts: 51.
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Appendix: R-code used in this lab

This lab focused on diagnostics for heteroscedasticity and normality assump-
tions of t-tests.

Operator Operation Description

var.test(y „ x) F -test

Test H0: σ2
1 “ σ2

2, given quantitative

responses in y with respect to

levels 1 and 2 in x.

asbio:modlevene.test(y, x) Modified Levene’s test

Test H0: σ2
1 “ σ2

2, given quantitative

responses in y with respect to

levels 1 and 2 in x.

shapiro.test(y) Shapiro-Wilks test

Test H0: Underlying distribution is

normal, given quantitative responses

in y.

qqnorm(y) Normal quantile plot

Create normal probability plot

given quantitative responses

in y

qqline(y)
Linear fit for

normal quantile plot

Overlays linear fit for normal

probability plot, given quantitative

responses in y

qq.Plot(y, x)

Multiple normal

quantile plot overlays,

and associated linear

fits

Creates multiple normal quantile

plots overlays, given quantitative responses

in y and associated categories in x.
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9

Alternatives to t-tests

Lab 9 Topics

1. Rank-based permutation tests, including the Wilcoxon
rank sum test

2. Strictly permutational tests

3. Comparison of nonparameteric approaches

If sample sizes are small, and/or sample sizes are highly unequal, and/or the data are
highly non-normal, t-tests should not be used. Outliers will also have a very negative effect on
valid inferences from t-tests. There are a number of different nonparametric alternatives to
t-tests. Nonparametric tests don’t rely on a´priori distributions or parent populations. These
methods are generally resistant to violations of t-test assumptions, particularly non-normality,
and the presence of outliers.

Rank-Based Permutation – Wilcoxon Rank Sum Test
The Wilcoxon rank sum test can be considered a nonparametric analog of a pooled variance
t-test. The test is equivalent to another nonparametric procedure called the Mann-Whitney
test. The Wilcoxon test does not assume normal distributions for the populations being
compared, and is resistant to outliers. However, it does assume that the distributions have
similar shapes (thus, we ostensibly assume that underlying population variances are equal).

Let ∆ be the true shift in location of one population with respect to a second population
or hypothesized value. That is,

∆ “ Location of population 1 ´ Location of population 2.

We are concerned with the following hypotheses:
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• Two-tailed:
H0 : ∆ “ 0
HA : ∆ ‰ 0

• Lower-tailed:
H0 : ∆ ě 0
HA : ∆ ă 0

• Upper-tailed:
H0 : ∆ ď 0
HA : ∆ ą 0

The Wilcoxon rank sum test is based on ranked-transformed data. The calculation of
its test statistic is based on three steps.

1. Rank-transform data. That is, order the data, for both samples from smallest to largest
values, then assign numbers from 1 to N (where n1 ` n2 “ N is the total number of
observations from both samples).

• If there are ties (duplicated values), the ranks in the data are taken to be the
average of the ranks for those observations.

2. Calculate W1 and W2:
W1 “ T1 ´

n1pn1 ` 1q

2 (9.1)

W2 “ T2 ´
n2pn2 ` 1q

2 (9.2)

where n1 = the sample size for population 1, n2 = the sample size for population 2, T1
is the sum of ranks for the sample from population 1, and T2 is the sum of ranks for
the sample from population 2.

3. Define the test statistic, W ˚. For a two-tailed test, W ˚ will be whichever is smaller,
W1 or W2. In an upper-tailed test, W ˚ will be W1. In a lower tailed test, W ˚ will also
be W1. If H0 is true, then W ˚ will be a random outcome from the Wilcoxon rank sum
distribution, with parameter values n1 and n2.
The Wilcoxon rank sum distribution is a two-parameter, discrete, bell-shaped, non-
negative distribution, that describes the distribution of Wilcoxon rank sum test statistic,
when comparing two unpaired samples drawn from the same arbitrary distribution.
Let W „ RankSumpn1, n2q.

• For a two tailed test, the P -value is calculated as 2 ¨ P pW ď W ˚q.
• For a lower tailed test the P -value is P pW ď W ˚q.
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• For an upper tailed test the P -value is P pW ě W ˚q.

Note: care will be required to compute the upper-tailed P -value, because W
is a discrete random variable. Specifically, while the Wilcoxon rank sum CDF
always gives P pW ď W ˚q (like all CDFs), it is also true that in the discrete
case, P pW ě W ˚q “ P pW ą pW ˚ ´ 1qq. Thus, unlike continuous distributions,
P pW ě W ˚q ‰ 1 ´ P pW ď W ˚q.

Example 9.1
A committee is studying the effect on alcohol on reaction time. They randomly assigned

20 subjects to either an alcohol treatment or a placebo treatment then measured reaction
times of the subjects (Table 9.1).

Table 9.1. The effect of alcohol on reaction time in seconds.

Placebo 0.9 0.37 1.63 0.83 0.95 0.78 0.86 0.61 0.38 1.97
Alcohol 1.46 1.45 1.76 1.44 1.11 3.07 0.98 1.27 2.56 1.32

Histograms of the alcohol data are shown in Figure 9.1. Is a t-test appropriate? Why or
why not?
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## alcohol <- read.csv(file.choose())
qq.Plot(alcohol[,1], alcohol[,2], col = c("black","gray"), pch = c(1,2))
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Figure 9.1. Normal quantile plots for the placebo and alcohol groups in Example 1. The data
are strongly right skewed and thus non-normal for both groups.

We go through the four steps of null hypothesis testing.

1. We expect that reaction times for the alcohol group will be larger (slower). Thus, we
define: ∆ “ Alcohol location ´ Placebo location, and test the hypotheses:

H0 : ∆ ď 0
HA : ∆ ą 0

We will use α “ 0.05.

2. Next we calculate the test statistic, W ˚. This requires rank-transforming the data
(Table 9.2).

155



Table 9.2. Raw and ranked data for Example 1. A = alcohol, P = Placebo.

Raw data Ranked data
Reaction time Treatment Reaction time Treatment Rank

0.9 P 0.37 P 1
0.37 P 0.38 P 2
1.63 P 0.61 P 3
0.83 P 0.78 P 4
0.95 P 0.83 P 5
0.78 P 0.86 P 6
0.86 P 0.9 P 7
0.61 P 0.95 P 8
0.38 P 0.98 A 9
1.97 P 1.11 A 10
1.46 A 1.27 A 11
1.45 A 1.32 A 12
1.76 A 1.44 A 13
1.44 A 1.45 A 14
1.11 A 1.46 A 15
3.07 A 1.63 P 16
0.98 A 1.76 A 17
1.27 A 1.97 P 18
2.56 A 2.56 A 19
1.32 A 3.07 A 20

To obtain the test statistic, we sum the ranks of the alcohol group (representing population
1, i.e., the 1st population in the hypotheses) and the sum of the ranks of the placebo group
(representing population 2, i.e., the 2nd population in the hypotheses). We get:

T1 “ 9 ` 10 ` 11 ` 12 ` 13 ` 14 ` 15 ` 17 ` 19 ` 20 “ 140.

T2 “ 1 ` 2 ` 3 ` 4 ` 5 ` 6 ` 7 ` 8 ` 16 ` 18 “ 70.

In R we could do something like:

156



ranks <- rank(alcohol[,1])
ns <- tapply(alcohol[,1], alcohol[,2], length)
n1 <- ns[1]; n2 <- ns[2]

T1 <- sum(ranks[alcohol[,2]=="Alcohol"])
T1

[1] 140

T2 <- sum(ranks[alcohol[,2]=="Placebo"])
T2

[1] 70

Calculating W1 and W2 we have:

W1 “ T1 ´
n1pn1 ` 1q

2 “ 140 ´
10p10 ` 1q

2 “ 140 ´ 55 “ 85.

W2 “ T2 ´
n2pn2 ` 1q

2 “ 70 ´
10p10 ` 1q

2 “ 70 ´ 55 “ 15.

We have a one-tailed test, so we use W1 for the test statistic. We have:

W ˚ “ W1 “ 85.

W1 <- T1 - n1 * (n1 + 1)/2
W1

Alcohol
85

W2 <- T2 - n2 * (n2 + 1)/2
W2

Placebo
15

W.star <- W1

3. To calculate the P -value, we first determine the null distribution. Because n1 “ n2 “ 10,
our null distribution is W „ RankSump10, 10q. We were warned above that calculating
an upper-tailed P -value using the Wilcoxon rank sum distribution requires that we find:
P pW ą pW ˚ ´ 1qq. Thus, for the P -value we have:
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pwilcox((W.star-1), 10, 10, lower.tail = F)

Alcohol
0.003420728

4. We reject H0 and conclude that reaction times for the alcohol group are slower than for the
placebo group.

Using the function wilcox.test directly we have:

wilcox.test(alcohol[,1] ˜ alcohol[,2], alternative = "greater")

Wilcoxon rank sum exact test

data: alcohol[, 1] by alcohol[, 2]
W = 85, p-value = 0.003421
alternative hypothesis: true location shift is greater than 0

■

The sampling distribution of W ˚

If sample sizes for both groups is greater than 10, the sampling distribution of W ˚ will be
approximately normally distributed, with mean:

µW ˚ “
n1n2

2 , (9.3)

and variance:

σ2
W ˚ “

n1n2

12 ¨ pn1 ` n2 ` 1q. (9.4)

In the presence of ties, the formula for the variance of W ˚ becomes more complicated:

σ2
W ˚ “

n1n2

12 ¨

˜

pn1 ` n2 ` 1q ´

řk
i´1 tipt

2
i ´ 1q

pn1 ` n2qpn1 ` n2 ´ 1q

¸

. (9.5)

where k = the number of ties, and ti denotes the number of tied observations in the ith
group of ties.

As we learned earlier (Lab 5), we can convert any normal distribution to a Z distribution
by subtracting the mean of the distribution, and dividing by the standard deviation of the
distribution. Thus we can calculate a z-test test statistic from a W ˚ test statistic using:

z˚
“

W ˚ ´ µW ˚

σW ˚

. (9.6)
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Notably, with most statistical software, the P -value for the Wilcoxon rank sum test is
calculated using the normal approximation z-statistic, particularly in the case of ties.

Example 9.2
For the alcohol reaction time example we have:

µW ˚ “
10 ¨ 10

2 “ 50.

Because there are no ties, we can use Eq 9.4 to calculate σ2
W ˚ . We have:

σ2
W ˚ “

10 ¨ 10
12 ¨ p10 ` 10 ` 1q “

100
12 ¨ 21 “ 175.

The resulting z-score is

z˚
“

W ˚ ´ µW ˚

σW ˚

“
85 ´ 50
?

175
“ 2.645751.

The P -value is calculated as P pZ ě z˚q, based on the upper-tailed form of HA. Thus, we
have:

pnorm(2.645751, lower.tail = F)

[1] 0.00407549

This P -value is very similar to the one we calculated in Example 1. The P -values would
be identical if the sample sizes were extremely large.

■

Strictly Permutational Procedures
In a conventional permutation test procedure, a random distribution of test statistics
is created by randomizing sample data. The observed test statistic is compared to this
empirical distribution to calculate a P -value. For example, consider an experiment where two
hypothetical treatment populations are being compared. The treatment populations are both
sampled, and a t-statistic is calculated, denoted t0. A permutational algorithm is then used
to randomly reassign treatments to observations. At each round of permutations, a t-statistic
is calculated, resulting (after many iterations) in an empirical distribution of test statistics.
The observed test statistic, t0, is compared to this distribution to find the permutational
P -value. This is calculated as the number of times an outcome as or more extreme than t0
occurs, divided by the number of permutations. Generally, to be conservative, we allow t0 to
be included in the number of observations equaling or exceeding the observed value. Thus,
we have:

P -value “
No. of random trials t0 is equalled or exceeded ` 1

No. of random trials (9.7)
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Upper and lower-tailed tests are performed by finding the proportion of the empirical null
distribution greater than or equal to, or less than or equal to t0, respectively. A two-tailed
test is performed by multiplying the proportion of the null distribution above the absolute
value of t0 by two.

The function MC.test from asbio performs upper, lower, and two-tailed tests using this
approach. By default, a pooled variance t-test procedure is used to calculate test statistics.

Example 9.3
Revisiting the alcohol example we have:

library(asbio)
MC.test(alcohol[,1], alcohol[,2], alternative = "greater")

Monte Carlo t-test

Paired = FALSE, No. perms = 1000
Alternative: Alcohol greater Placebo

Obs. test stat Perms > test stat P-val
2.698941 1.000000 0.002000

■

A Comparison of Nonparametric
Approaches
Rank based permutation procedures (e.g., the Wilcoxon rank sum test) have three advantages
over parametric tests (e.g., t-tests) and non-ranked nonparametric procedures (e.g., strictly
permutational tests). First, they are much less sensitive to outliers compared to parametric
methods (and strictly permutation tests based on mean differences). Second, because of the
fact that their empirical distributions include all possible outcomes, the scope of inference
for rank based permutation procedures is generally considered to be less of an issue than for
strictly permutational tests. Finally, rank-based permutation procedures are only slightly less
powerful than parametric methods if their parametric assumptions hold, and may be more
powerful than parametric methods if parametric assumptions do not hold (Pitman, 1949).

Strictly permutational tests are useful when underlying parental distributions are unknown,
or when random sampling is not possible. This is because independence of observations is
not required (Manly, 2006). A major difficulty with strictly permutational tests, however, is
that inference will be hypothetically limited to the sample. Crowley (1992) asserted that the
relevance of this problem is largely theoretical, because randomization tests result in similar
P -values to parametric tests when parametric assumptions hold (Quinn & Keough, 2002;
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Manly, 2006). Like rank-based permutation procedures, tests based strictly permutational
tests are sensitive to differences in treatment variances (Boik, 1987). As a result, these
procedures should not be looked upon as a cure-all for heteroscedasticity (Quinn & Keough,
2002).

Assignment 9

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, fig-
ures and computer output you include adhere to class standards (see Syllabus).

Wilcoxon rank sum test

1. Murakami et al. (1997) studied the effect of drug treatments on levels
of serum β-2 microglobulin patients with multiple myeloma. Serum β-2
microglobulin is produced in the body as a result of myelomas, and thus
can be used as an indicator of the severity of disease. The researchers
randomly assigned twenty patients to treatment and control groups (Table
9.3). The treatment patients received two types of drugs: malphalan and
sumerifon while the control group received only sumerifon. We will test the
hypothesis that the control will have elevated levels of β-2 microglobulin.
Use α “ 0.05.

Table 9.3. Effect of drug treatments on levels of serum β-2 microglobulin in patients with
multiple myeloma.

Treatment 2 2.7 3.9 2.7 2.1 2.6 2.2 4.2 5 0.7
Control 3.5 2.5 3.8 8.1 3.6 2.2 5 2.9 2.3 2.9

a) (6 pts) Examine the data with normal quantile plots and histograms.
i) Insert the figures into your document.

ii) Does a t-test appear to be a good idea? Why or why not?
b) (10 pts) Conduct a Wilcoxon rank sum test.

i) State your hypotheses
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ii) Rank the data. Provide snapshots to show work.
iii) Calculate the test statistic. Provide snapshots to show work.

• Calculate T1 and T2.
• Calculate W1 and W2 . Which one is your test statistic?

iv) Calculate the P -value in R using pwilcox. This will take some
care for upper-tailed alternative hypotheses because the rank sum
distribution is discrete. Show work.

v) State your conclusions, i.e., can we reject H0?
c) (2 pts) Run the test using wilcox.test. Use the argument correct

= FALSE. This prevents the application of Yate’s correction for discon-
tinuity, and makes it easier to replicate wilcox.test results by hand.
Provide snapshots to show work.

Normal approximation

2. (7 pts) Calculate a normal approximation P -value for the Wilcoxon test.
Show work.

a) Calculate the parameters for the sampling distribution of W ˚, µW ˚ and
σ2

W ˚. You will have to use Eq. 9.5 to calculate σ2
W ˚ because there are

ties in the data.
b) Calculate a z-score from your Wilcoxon test statistic
c) Calculate the P -value, under the asymptotic normality of W ˚.
d) Does the resulting P -value equal the one provided by wilcox.test in

(1biv) (given rounding error)? Why?

Strictly permuational tests

3. (8 pts) Repeat the test of the Wilcoxon test hypotheses from Q1 using the
permutational algorithm MC.test from asbio.

a) Run the test. Provide snapshots to show work.
b) Interpret your results. Do they agree or disagree with the results from

Q1 and Q2? Why or why not?
c) Run the randomization test again and attach the results.
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d) Are your results from your randomizations the same? Why or why not?
If they are different, how different are they?

4. (4 pts) What are the advantages and disadvantages of rank-based permu-
tation tests and strictly permutational tests?

Q1 18pts, Q2 7pts, Q3 8pts, Q4 4pts. Total pts: 37.
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10

Regression I

Lab 10 Topics

1. Simple linear regression

• Linear regression model
• Parameter estimation
• Hypothesis testing

The Simple Linear Regression Model
In a simple linear regression we study the relationship of a single quantitative response
variable, Y , and a single quantitative explanatory variable, X. For instance, to measure the
degree to which plant height is passed on from parent plant to offspring, we could measure
seedling height at maturity, Y , and mean parental height, X, and then “regress” Y on X. A
regression analysis provides a model that allows predictions of Y given X. The model can be
graphically expressed as a regression line that can be overlain on a bivariate scatterplot of
the observed Y and X outcomes (Fig 10.1). In a regression plot, X outcomes are positioned
with respect to the ordinate (horizontal axis) and Y outcomes are positioned along the
abscissa (vertical axis).

In the context of regression, the X variable is often called the predictor.
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Figure 10.1. Biological applications for regression. Regression lines in plots show the response
variable as a linear function of the explanatory variable. The plot in (a) shows log10 numbers
of breeding species of birds as a function of latitude, based on the meta-analysis of Dobzhansky
(1950). The plot in (b) is an example of a Bradford colorimetric protein assay (Bradford,
1976). Absorbance units at 595 nanometers are plotted as a function of the concentration
of Bovine Serum Albumin (BSA) which has been mixed with the Bradford reagent. Figure
from Aho (2014).

The simple linear regression model has the form:

Yi “ β0 ` β1Xi ` εi. (10.1)

where β0 and β1 are parameters that define Y as a function of X. Thus, the model in
Eq. 10.1 is an idealization called the population regression model or true regression
model, based on all possible X, Y pairs.

• β0 is the true Y -intercept, the true mean value of Y when X “ 0 (Fig 10.1). As
a result the units for β0 will be the same as the units of the Y variable. When the
scope of the regression model includes X “ 0, then the intercept term has interpretable
meaning. However, when the scope of the model does not cover X “ 0 (the value of Y
given X “ 0 is extrapolated), then β0 will not be interpretable.

• β1 is the true slope, the average linear change in the response variable as the result
of a one unit increase in the explanatory variable (Fig 10.2). The units for β1 are the
ratio of the units of Y and X.
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Figure 10.2. Graphical representation of parameters from the true regression model and a
fitted model that estimates the true model. The fitted line is the best possible linear fit for
six random points generated from 0.6 ` 1.2Xi ` εi, where εi „ Np0, 1q. Figure from Aho
(2014).

The term εi in Eq. 10.1 represents a random variable describing the variability of the
response given the ith value of the predictor. For inferential purposes, we assume εi „ Np0, σ2q,
where σ2 (the error term variance) is the true variance of the difference of observed values
and fitted values (Fig 10.3). Because the errors are normally distributed with mean zero, the
regression model is a mean function with fits occurring at the mean of normal distributions,
whose mean, EpYiq, is β0 ` β1Xi, and whose variance is the error term variance, σ2. That is,

EpYiq “ β0 ` β1Xi, (10.2)

Yi „ Npβ0 ` β1Xi, σ2
q. (10.3)
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Figure 10.3. Example of a population (true) regression line for simple linear regression. The
mean response is a straight-line function of the explanatory variable. The true model is
EpYiq “ 1.3 ` 0.8Xi. We have two random observations of Yi given X. These are Y1 “ 4.2
and Y2 “ 11. These responses correspond to the X outcomes 3 and 14. The expectation of
Y given X “ 14 is 12.5. Thus, we have the error, ε2 “ ´0.5. Figure follows Aho (2014).

Regressions are in a class of algorithms known as general linear models. These models
allow Y to be expressed as a linear transformation of X and assume model errors have the
same distribution: εi „ Np0, σ2q. Another type of general linear model is Analysis of Variance
(ANOVA). We will be introduced to ANOVAs over the last several weeks of lab.

Parameter Estimation
The terms β0 and β1 in Eq. 10.1 are the Y -intercept and slope of the true regression model,
based on all observable X, Y pairs. It is very unlikely that we will be able to record all
observable X, Y pairs. Thus, we must estimate β0 and β1 with β̂0 and β̂1, using sample
data. Inferential interpretations of the sample Y -intercept and sample slope follow the
interpretations given earlier for the parameters β0 and β1, respectively. Implementation of β̂0
and β̂1 results in the fitted model:

Ŷi “ β̂0 ` β̂1Xi (10.4)
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where Ŷi is the ith fitted value and β̂0 and β̂1 are the sample Y -intercept and the
sample slope, respectively. We denote the ith model residual as the difference between ith
fitted value and the ith observed response:

ε̂i “ Yi ´ Ŷi. (10.5)

Residuals, ε̂i, serve as estimates for the true model errors, εi. β̂0 and β̂1 are the ordinary
least squares estimators for β0 and β1. As a result, the sum of squared residuals for the
model,

řn
i“1 ε̂2

i , is guaranteed to be minimized, compared to a regression line based on any
other possible estimates for the true slope and true Y -intercept. We calculate β̂1 using:

β̂1 “

řn
i“1pXi ´ X̄qpYi ´ Ȳ q

řn
i“1pXi ´ X̄q2

“ r
SY

SX

. (10.6)

Utilizing the result from Eq. 10.6, the equation for β̂0 can be written as:

β̂0 “ Ȳ ´ β̂1X̄. (10.7)

r and r2

The second version of Eq 10.6 allows computation of β̂1 by multiplying the ratio of the sample
standard deviations for Y and X, SY

SX
, by the Pearson correlation coeffient, r . The

correlation coefficient varies from -1 to 1, and represents the strength of the straight-line
association of Y and X. Negative values of r indicate that X and Y are negatively associated
(Y decreases as X increases, and vice versa), resulting in a negative value for the slope
coefficient. Positive values indicate that Y and X are positively associated (Y and X increase
together), resulting in a positive value for the slope coefficient. Values of r near 1 and -1
indicate that X and Y are strongly positively and negatively correlated, respectively. Values
of r near zero indicate that Y and X are not linearly correlated. The Pearson correlation
coefficient can be calculated as:

r “
1

n ´ 1

n
ÿ

i“1

ˆ

Xi ´ X̄

SX

˙ ˆ

Yi ´ Ȳ

SY

˙

. (10.8)

Squaring r gives r2, the coefficient of determination. The coefficient of determination
ranges from 0 to 1 and can be interpreted, in a regression context, as the proportion of
variability in Y explained by the regression model (i.e., the proportion of variability in Y
explained by X). Values of r2 near 1 indicate that Y can be predicted effectively with X.

Hypothesis Testing
Our primary interest in regression analysis is whether Y changes linearly with X. To address
this, the following hypotheses are generally used:
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H0 : β1 “ 0
HA : β1 ‰ 0

If H0 is true, and β1 does in fact equal 0, then clearly Y will not change linearly with
X. While less typical (and not the default of most software packages), we can also test
one-tailed (upper-tailed and lower-tailed) alternative hypotheses for β1, i.e., HA : β1 ą 0 and
HA : β1 ă 0, respectively.

The underlying sampling distribution of β̂1 will be normally distributed under model
assumptions and will be asymptotically normal otherwise. The variance for sampling distri-
bution will generally require estimation, requiring specification of a t-distribution for the null
distribution. We calculate the test statistic as:

t˚
“

β̂1

σ̂β̂1

, (10.9)

where

σ̂β̂1
“

d

MSE
řn

i“1pXi ´ X̄q2
, (10.10)

The mean squared error, MSE, is analogous to the pooled-variance estimator in pooled
variance t-tests. It is calculated as:

MSE “

řn
i“1pYi ´ Ŷiq

2

n ´ 2 “

řn
i“1 ε̂2

i

n ´ 2 (10.11)

The numerator in Eq. 10.11, i.e., the sum of squared residuals, is often called the sum of
squares error, or SSE. We divide SSE by its degrees of freedom to obtain MSE. We use
n ´ 2 degrees of freedom instead of n ´ 1 because, in a simple linear regression there are two
parameters that need to be estimated, β0 and β1. As we add more explanatory variables in a
format called multiple regression this will further decrease the degrees of freedom.

If H0 is true, and assumptions for the test are met, then t˚ will be a random outcome
from the null distribution: T „ tpn ´ 2q. For upper-tailed tests we calculate the P -value as:
P pT ě t˚q. For lower-tailed tests we calculate the P -value as P pT ď t˚q. For two tailed tests,
the most common application, we calculate the P -value as: 2 ¨ P pT ě t˚q.
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Example 10.1
We obtain height and DBH, i.e., diameters at breast height (i.e. 4’ 6”) data for twenty randomly chosen trees at a cherry tree

farm (Table 10.1). We want to know if DBH is influencing the height of trees at the farm. While we would not ordinarily do this,
the entire linear regression is calculated below by hand.

Table 10.1. DHB and height of cherry trees.

Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
X “ DBH (inches) 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 11.3 11.4 11.4 11.7 12 12.9 12.9 13.3 13.7 13.8
Y “ Height (feet) 70 65 63 72 81 83 66 75 80 75 79 76 76 69 75 74 85 86 71 64

We wish to test the hypotheses:

H0 : β1 “ 0
HA : β1 ‰ 0

We will use α “ 0.05. To test these hypotheses, we must first estimate the regression model parameters, β1 and β0, using Eqs.
10.6 and 10.7. This requires calculation of summary statistics for X and Y . We find: x̄ “ 11.32, ȳ “ 74.25, sX “ 1.55279, and
sY “ 6.827768. To calculate β̂1 we first calculate the correlation coefficient using Eq. 10.8. This requires centering (subtracting
the mean) and scaling (dividing by the standard deviation) the data for X and Y and finding the sum of the product of these
operations (Table 10.2).

Table 10.2. Centering and scaling data for X and Y , and finding the sum of the product of these operations, in order to calculate
r.

Obs. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a “

Xi´X̄
SX

-1.94 -1.75 -1.62 -0.53 -0.40 -0.33 -0.21 -0.21 -0.14 -0.08 -0.01 0.05 0.05 0.24 0.44 1.02 1.02 1.28 1.53 1.60

b “
Yi´Ȳ

SY
-0.62 -1.35 -1.65 -0.33 0.99 1.28 -1.21 0.11 0.84 0.11 0.70 0.26 0.26 -0.77 0.11 -0.04 1.57 1.72 -0.48 -1.50

a ¨ b 1.21 2.37 2.67 0.17 -0.39 -0.43 0.25 -0.02 -0.12 -0.01 -0.01 0.01 0.01 -0.19 0.05 -0.04 1.60 2.19 -0.73 -2.40
ř

“ 6.22

We find:

r “
1

n ´ 1

n
ÿ

i“1

ˆ

Xi ´ X̄

SX

˙ ˆ

Yi ´ Ȳ

SY

˙

“
1

20 ´ 1 ¨ 6.215756 “
6.215756

19 “ 0.3271.
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Thus, r2 “ 0.32712 “ 0.107. This means that approximately 11% of variation in height data can be explained by DBH.
Calculating β̂1 we have:

β̂1 “ r
sY

sX

“ 0.3271 ¨
6.83
1.55 “ 1.438488.

Thus, for every inch increase in DBH we would expect an increase of 1.438 feet in tree height. Calculating β̂0 using the result
for β̂1 we have:

β̂0 “ Ȳ ´ β̂1X̄ “ 74.25 ´ 1.438p11.32q “ 57.96632.

Thus, our fitted model is: Ŷi “ 57.966 ` 1.438Xi. The fitted values and residuals for this model are shown in Table 10.3.

Table 10.3. Fitted values and residuals for the cherry tree model.

Obs. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ŷi “ 57.97 ` 1.44Xi 69.9 70.3 70.6 73.1 73.4 73.5 73.8 73.8 73.9 74.1 74.2 74.4 74.4 74.8 75.2 76.5 76.5 77.1 77.7 77.8
ε̂i “ Ŷi ´ Yi 0.1 -5.3 -7.6 -1.1 7.6 9.5 -7.8 1.2 6.1 0.9 4.8 1.6 1.6 -5.8 -0.2 -2.5 8.5 8.9 -6.7 -13.8

To calculate the test statistic, t˚, we must first calculate the standard error for β̂1, σ̂β̂1
. We find:

σ̂β̂1
“

d

MSE
řn

i“1pXi ´ X̄q2
“

b

1
n´2

řn
i“1 ε̂2

i
?

45.812
“

6.6289
?

45.812
“ 0.9793764

Thus, the test statistic is:

t˚
“

β̂1

σ̂β̂1

“
1.438
0.979 “ 1.468779

To calculate the P -value, we find 2 ¨ P pT ě |t˚|q where T „ tpn ´ 2q. We have:

2 * pt( 1.468779, 18, lower.tail = F)

[1] 0.1591527

We fail to reject H0 at α “ 0.05. Surprisingly, perhaps, tree height does not appear to be a linear function of DBH.
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■

Below we calculate results for Example 1 “by hand” using R to help. Here we calculate summary statistics:

height <- read.csv("height.csv")

x <- height[,2]; y <- height[,3]
x.bar <- mean(x); y.bar <- mean(y)
s.x <- sd(x); s.y <- sd(y)
n <- 20

Here we calculate r, β̂1 and β̂0.

r <- 1/(n - 1) * sum((x - x.bar)/s.x * (y - y.bar)/s.y)
r

[1] 0.3271449

beta.hat1 <- r * s.y/s.x
beta.hat1

[1] 1.438488

beta.hat0 <- y.bar - beta.hat1 * x.bar
beta.hat0

[1] 57.96632
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Below we calculate the test statistic and P -value.

y.hat <- beta.hat0 + beta.hat1 * x
residuals <- y.hat - y

MSE <- sum(residualsˆ2)/(n - 2)
se.beta.hat1 <- sqrt(MSE/sum((x - x.bar)ˆ2))
se.beta.hat1

[1] 0.9793764

t.star <- beta.hat1/se.beta.hat1
t.star

[1] 1.468779

2 * pt(t.star, n - 2, lower.tail = F)

[1] 0.1591526

We can easily create a plot of the regression using R (Fig 10.4)
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plot(x, y, xlab = "DBH (inches)", ylab = "Height (ft)")
abline(beta.hat0, beta.hat1)
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Figure 10.4. Plot of regression model from Example 1.

We could have created the regression model and run the hypothesis test in R using very
little code.

model <- lm(y ˜ x)
summary(model)

Call:
lm(formula = y ˜ x)

Residuals:
Min 1Q Median 3Q Max

-13.8174 -5.4521 0.5084 5.1007 9.4980

Coefficients:

174



Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.9663 11.1852 5.182 6.27e-05 ***
x 1.4385 0.9794 1.469 0.159
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.629 on 18 degrees of freedom
Multiple R-squared: 0.107,Adjusted R-squared: 0.05741
F-statistic: 2.157 on 1 and 18 DF, p-value: 0.1592

Assignment 10

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

The regression model

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

1. (9 pts) Go to the Ch. 9 pulldown menu. Click on Regression(Add/delete
points). Mac-users and others who wish to obtain the GUI directly can
type: see.adddel().

a) By adding points create a poor explanatory model (one with a small
slope, but with a non-zero slope). Make sure the slope is poor enough
so that the model will be non-significant (P -value ą 0.05). Insert an
the figure into your document. This will require a screenshot or a snip
tool.

b) Add a whole bunch of points. Try not to change the slope from (a) too
much. Is it possible to get a significant P -value by simply adding more
points?
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c) What does this indicate with respect to the effect of sample size on
P -values?

d) Does this suggest that investigators should potentially modify the
significance level or sample size based on the potential effect size (slope)?
Why?

2. (4 pts) Click on Regression(Move points). Mac-users and others who
wish to obtain the GUI directly can type: see.move().

a) Which points have the greatest effect on the regression slope, those
near the center with respect to the ordinate (X-axis), or those far from
the center?

b) Insert illustrative example(s) into your document. This will require a
screenshot or snip tool.

Parameter estimation and hypothesis testing

3. The NASA GISS Surface Temperature Analysis (GISTEMP v4) model
provides an estimate of global surface temperature change from 1880-
present, based on a regularly spaced array of virtual weather stations
covering the entire globe. Virtual stations, in turn, are informed by a
continual stream of temperature reports from weather stations, ships, and
buoys. The GISTEMP v4 model reports temperature anomalies with
respect to average temperatures from 1951-1980, measured for the same
site. That is, an report of -4.4 at site x for year y would indicate a 4.4o

drop from the 1951-1980 average at that site and year combination. Recent
GISTEMP v4 data can be obtained from this week’s Canvas data folder.

a) (2 pts) Correctly state your hypotheses.
b) (4 pts) Calculate r, r2, β̂1, and β̂0, in that order, by hand, using R to

help, see Eqs. 10.8, 10.6, and 10.7. Do not use lm for this step.
c) (4 pts) Correctly interpret the meaning of your results for r2 and β̂1.
d) (3 pts) Calculate σ̂β̂1

“by hand” using R to help, see Eq. 10.10. Do not
use lm

e) (2 pts) Calculate t˚ “by hand” using R to help, see Eq 10.9.
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f) (2 pts) Calculate the P -value associated “by hand” using R to help.
g) (4 pts) What are your conclusions for the null hypothesis test concerning

β1? Does there appear to be an association between temperature
anomaly and time? If so, what is the form of the association?

h) (2 pts) Create a plot of the regression model using plot.
i) (2 pts) Verify your results by running the regression using lm.
j) (2 pts) Calculate Ŷ9, i.e., the fitted value corresponding to the 9th

observed X outcome, i.e., X9, “by hand”, using R to help, see Eq. 10.4.
k) (2 pts) Calculate ε̂9, i.e., the residual corresponding to the 9th observed

X outcome, i.e., X9, “by hand”, using R to help, see Eq 10.5.

Q1 9pts, Q2 4pts, Q3 29 pts. Total pts: 42.
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Appendix: R-code used in this lab

This lab focused on regression models which can be created using the function
lm. The acronym lm stands for general linear model. General linear models,
including regression, can be run using the framework:

lm(Y ˜ X)

where Y and X represent response and explanatory variables, respectively.
Let weight and calories be columns in a dataframe called diet. These
variables can be called by name directly if the data argument in lm is used.
For instance,

lm(weight ˜ calories, data = diet)

Linear models generated by lm can be summarized using summary.lm:

model <- lm(weight ˜ calories, data = diet)
summary(model)
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11

Regression II

Lab 11 Topics

1. Simple linear regression assumptions and diagnostics

2. Regression confidence intervals and prediction intervals

Regression Assumptions
There are four assumptions for simple linear regression:

1. Observations are independent.

2. The error terms distributions are normally distributed.

3. The error terms distributions are homoscedastic.

4. The true relationship of Y and X is actually linear.

Most of these assumptions concern the form of the error term distribution. Recall that
the simple linear regression model is:

Yi “ β0 ` β1Xi ` εi (11.1)

where εi
iid
„ Np0, σ2q, and iid means independent and identically distributed.

To summarize: the errors (noise distributions around the regression line) for every value of
Y given X are assumed to be independent and identically normally distributed, with mean 0,
and a constant variance, σ2. Because the errors are normally distributed with mean zero, the
regression model is a mean function with fits occurring at the mean of normal distributions,
whose mean, EpYiq, is β0 ` β1Xi, and whose variance is the error term variance, σ2. That is,
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EpYiq “ β0 ` β1Xi, (11.2)

Yi „ Npβ0 ` β1Xi, σ2
q. (11.3)

These ideas are summarized in Fig 11.1.

Y
Y Y

Y

Y

Y Xi

Figure 11.1. Example of assumptions for the population regression line for simple linear
regression. The mean response is a straight-line function of the explanatory variable. The
true model is EpYiq “ 1.3 ` 0.8Xi. We have two random observations of Yi given X. These
are Y1 “ 4.2 and Y2 “ 11. These responses correspond to the X outcomes 3 and 14. The
expectation of Y given X “ 14 is 12.5. Thus, we have the error, ε2 “ ´0.5. Figure follows
Aho (2014).

When model-checking, we remain attentive to the presence of outliers. This is because
estimators in general linear models (including β̂0 and β̂1 in simple linear regression) are not
resistant to outliers. Because our assumptions generally concern the characteristics of the
true errors, we generally check model assumptions by by examining the model residuals. This
is because the residuals estimate the εis.

Example 11.1
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Table 11.1 contains the cherry tree volume and diameter data. We will fit the volume
of trees as a function of their diameter at breast height (DBH), i.e., 1.37 meters above the
ground.

Table 11.1. Cherry tree volume data.

Observation DBH (inches) Volume (ft3)
1 8.1 10.3
2 8.6 10.3
3 8.8 10.2
4 10.5 16.4
5 10.7 18.8
6 10.9 19.7
7 10.2 15.6
8 10.7 18.2
9 11.3 22.6
10 11.4 19.9

We have the following hypotheses:

H0 : β1 “ 0
HA : β1 ‰ 0

We run the regression in R with the following result:

volume <- read.csv("volume.csv")
model <- lm(volume ˜ DBH, data = volume)
summary(model)

Call:
lm(formula = volume ˜ DBH, data = volume)

Residuals:
Min 1Q Median 3Q Max

-1.2034 -0.9944 -0.2142 0.5789 2.0420

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.1755 3.4947 -6.059 0.000303 ***
DBH 3.6932 0.3432 10.760 4.9e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.218 on 8 degrees of freedom
Multiple R-squared: 0.9354,Adjusted R-squared: 0.9273
F-statistic: 115.8 on 1 and 8 DF, p-value: 4.898e-06

181



Based on the P -value for the slope hypotheses, P “ 1.29 ˆ 10´6, we can reject H0 at
α “ 0.05. This conclusion, however, is only valid if our assumptions are valid.

Independence
We first check the assumption of independence. There are two main ways that independence
can be violated: temopral dependence and spatial dependence. Temporal dependence
occurs when a serial process causes outcomes to be predictable based on how close together
they are in time. Similarly, spatial dependence occurs when outcomes are predictable based
on how close together they are in space. To check for temporal independence we can plot
model residuals against the order that observations were taken. If independence is satisfied
there should be no patterns to points in this plot. To get the model residuals for the current
example, I could type:

e.hat <- resid(model)

The observation order of the volume data set is given in the 1st column. A plot of
residuals as a function of the order of the observations is shown in Fig 11.2.
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plot(volume[,1], e.hat, xlab = "Order of observations",
ylab = "Residuals", type = "o")
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Figure 11.2. Residuals as a function of order in Ex. 1.

There seems to be little pattern to points in the plot, supporting the assumption of
independence.

Normality
We expect noise in the regression model have the distribution Np0, σ2q for each Y given
X (Fig. 11.1). We can check this assumption with a of residuals (Fig. 11.3), and the
Shapiro-Wilk test for normality.
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qqnorm(e.hat, main = "")
qqline(e.hat)
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Figure 11.3. Normal quantile plot of residuals in Ex. 1.

In a Shapiro-Wilk test of the residuals the hypotheses are:

H0 : The underlying distribution of errors is normal
HA : The underlying distribution of errors is not normal

shapiro.test(e.hat)

Shapiro-Wilk normality test

data: e.hat
W = 0.90091, p-value = 0.2242

Although the normal quantile plot raises some concerns, the Shapiro-Wilk test supports
the assumption of normality.
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Homoscedasticity
Because we assume errors have same the distribution, Np0, σ2q, for each Y given X, we
assume that the variance, σ2 is constant along the regression line (Fig. 11.1). To check for
equal error variances we can plot residuals as a function of fitted values (Fig 11.4). If the
assumption of homoscedasticity is valid there should be no pattern to the points in the plot.
A common heteroscedastic pattern is a shotgun scatter of points that become more dispersed
as fitted values increase.

fits <- fitted(model)
plot(fits, e.hat, xlab = "Fitted values", ylab = "Residuals")
abline(h = 0, lty = 2)
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Figure 11.4. Plot of residuals as a function fits in Ex. 1.

There appears to be little evidence of heteroscedasticity in Fig 11.4.

Linearity
A fundamental assumption of general linear regression models is that the relationship between
Y and X is linear. Non-linear relationships can be modeled in a number of ways. Given
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concave or convex associations, the simplest approach is to use a linear model of the polynomial
relationship: EpYiq “ β0 ` β1Xi ` β2X

2
i . We will not address polynomial regression in

this lab.
We can check the appropriateness of the simple linear regression model by examining a

scatterplot of the X, Y data with the regression line overlaid (Fig 11.5).

plot(volume[,2], volume[,3], xlab = "DBH (inches)", ylab =
expression(paste("Volume (", feetˆ3,")")))

abline(coef(model))
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Figure 11.5. Plot of regression model from Ex. 1.

A simple linear regression model seem reasonable here.

We can easily obtain versions of Fig 11.3 and Fig 11.4 simultaneously, along with a plot
that helps to identify outliers (Fig 11.6).
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par(mfrow = c(2,2), mar=c(5,4,1.5,1.5))
plot(model)
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Figure 11.6. Default plots from plot.lm Solid red lines are smoother fits. The left-hand
figures allow consideration of homoscedasticity; in fact, the top-left plot is equivalent to Fig
11.4. The top-right plot is identical to Fig 11.3. The bottom-right hand plot addresses outliers.
The leverage of a particular point quantifies how unusual it is in explanatory variable space.
For simple linear regression, oservations greater than 4{n can generally be considered outliers.
Our cutoff for outliers is then 4/10 = 0.4. One point (obs. 1) exceeds this high leverage
cutoff. Cook’s distance quantifies how much a model is affected by removing a point. If a
point substantially affects a model it is said to be influential. The Cook’s distances here have
been converted into probabilities from an F -distribution. If a point has a probability ą 0.5 it
can be considered an outlier . Based on this criterion, observation one is an influential point.
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Intervallic Estimators for Regression
Confidence intervals are calculable for all linear regression parameters, and for fitted and
predicted values.

Confidence interval for β1

We can calculate a p1 ´ αq100% confidence interval for β1 using Eq. 11.4.

β̂1 ˘ tp1´ α
2 ,df“n´2q ¨ σ̂β̂1

(11.4)
where

σ̂β̂1
“

d

MSE
řn

i“1pXi ´ X̄q2
, (11.5)

and

MSE “

řn
i“1pYi ´ Ŷiq

2

n ´ 2 “

řn
i“1 ε̂2

i

n ´ 2 . (11.6)

Example 11.2
Revisiting the cherry tree volume example (Table 11.1) we have the following 95%

confidence interval for β1:

β̂1 “ r
SY

SX

“ 0.9671469 ¨
4.51762
1.183028 “ 3.693236.

σ̂β̂1
“

d

MSE
řn

i“1pXi ´ X̄q2
“

c

1.483833
12.596 “ 0.3432228.

Applying Eq. 11.4 we have:

β̂1 ˘ tp1´ α
2 , df“n´2q ¨ σ̂β̂1

3.693236 ˘ tp1´ 0.05
2 , df“8q ¨ 0.3432228

3.693236 ˘ 2.306004 ¨ 0.3432228
3.693236 ˘ 0.7914733

p3.693236 ´ 0.7914733, 3.693236 ` 0.7914733q

p2.901763, 4.484709q.

Thus, we are 95% confident that the true model slope lies in the interval (2.901763,
4.484709). Performing these operations “by hand” in R we have:
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x <- volume[,2]; y <- volume[,3]

beta.hat1 <- coef(model)[2]
e.hat <- resid(model)
n <- length(e.hat)

MSE <- sum(e.hatˆ2)/(n-2)
sigma.hat.beta.hat <- sqrt(MSE/sum((x - mean(x))ˆ2))

alpha <- 0.05 # for 95% CI
t.crit <- qt(1 - alpha/2, n- 2)
margin <- sigma.hat.beta.hat * t.crit
CI <- c(beta.hat1 - margin, beta.hat1 + margin)
CI

DBH DBH
2.901763 4.484709

The function confint will provide confidence intervals for both regression parameters, β0
and β1. Thus, we can quickly obtain the result above, using:

confint(model, level = 0.95)

2.5 % 97.5 %
(Intercept) -29.234363 -13.116733
DBH 2.901763 4.484709

■

Confidence interval for EpYhq

A p1 ´ αq100% confidence interval for the hth true fitted value, EpYhq, is constructed using:

Ŷh ˘ tp1´ α
2 , df“n´2q ¨ σ̂Ŷh

(11.7)
where

σ̂Ŷh
“

d

MSE

„

1
n

`
pXh ´ X̄q2

řn
i“1pXi ´ X̄q2

ȷ

, (11.8)

Example 11.3
To calculate a confidence interval for a true fitted value, we have to first define Xh, the

explanatory outcome corresponding to the fitted value of interest, Yh. For the cherry tree
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volume example, we will consider the explanatory outcome DBH = 8.1. This was the first
observed X outcome in the volume dataset.

Applying Eq 11.8 we have:

σ̂Ŷh
“

d

MSE

„

1
n

`
pXh ´ X̄q2

řn
i“1pXi ´ X̄q2

ȷ

“

d

1.483833
„

1
10 `

p8.1 ´ 10.12q2

12.596

ȷ

“

d

1.483833
„

1
10 ` 0.3239441

ȷ

“ 0.7931344.

Applying Eq 11.7 we have:

Ŷh ˘ tp1´ α
2 , df“n´2q ¨ σ̂Ŷh

8.739663 ˘ tp1´ 0.05
2 , df“10´2q ¨ 0.7931344

8.739663 ˘ 2.306004 ¨ 0.7931344
8.739663 ˘ 1.828971

p8.739663 ´ 1.828971, 8.739663 ` 1.828971q

p6.910692, 10.56863q

Thus, we are 95% confident that the true fitted value for the explanatory value Xh “ 8.1
will be in the interval (6.910692, 10.56863).

Performing these operations “by hand” in R we have:

x.h <- x[1]
y.hat.h <- fitted(model)[1]# or: predict(model, newdata = data.frame(DBH = 8.3))

sigma.hat.Y.hat.h <- sqrt(MSE * (1/n + (x.h - mean(x))ˆ2/sum((x - mean(x))ˆ2)))

alpha <- 0.05 # for 95% CI
t.crit <- qt(1 - alpha/2, n- 2)
margin <- sigma.hat.Y.hat.h * t.crit
CI <- c(y.hat.h - margin, y.hat.h + margin)
CI

1 1
6.910692 10.568635

We can easily obtain confidence intervals for EpYhq using the function predict. Here is
the 95% confidence interval for EpYhq for Xh “ 8.1.
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predict(model, newdata = data.frame(DBH = 8.1), interval = "confidence", level = 0.95)

fit lwr upr
1 8.739663 6.910692 10.56863

Here are 95% confidence intervals for EpYhq, for all observed X outcomes.

predict(model, interval = "confidence", level = 0.95)

fit lwr upr
1 8.739663 6.910692 10.56863
2 10.586281 9.090837 12.08173
3 11.324929 9.953600 12.69626
4 17.603430 16.665609 18.54125
5 18.342077 17.342186 19.34197
6 19.080724 17.998980 20.16247
7 16.495459 15.604920 17.38600
8 18.342077 17.342186 19.34197
9 20.558018 19.269107 21.84693
10 20.927342 19.579976 22.27471

■

Prediction interval for Yhpnewq

A prediction interval for Yhpnewq (the hth true predicted value) represents not a range that
the true fitted value will lie in at a certain level of confidence (this is the confidence interval
for EpYhq), but the range that a new response, given Xh will fall into at a particular level of
confidence. A prediction interval for Yhpnewq is constructed using:

Ŷh ˘ tp1´ α
2 , df“n´2q ¨ σ̂Ŷhpnewq

(11.9)

where

σ̂Ŷhpnewq
“

d

MSE

„

1 `
1
n

`
pXh ´ X̄q2

řn
i“1pXi ´ X̄q2

ȷ

. (11.10)

Example 11.4
As with a confidence interval for EpYhq, to calculate a prediction interval for Yhpnewq, we

must define Xh, the explanatory outcome corresponding to the fitted value of interest, Yh.
Using the cherry tree volume model, we will again consider the explanatory outcome DBH =
8.1 (the first observed X outcome in the volume dataset).
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Applying Eq 11.10 we have:

σ̂Ŷhpnewq “

d

MSE

„

1 `
1
n

`
pXh ´ X̄q2

řn
i“1pXi ´ X̄q2

ȷ

“

d

1.483833
„

1 `
1
10 `

p8.1 ´ 10.12q2

12.596

ȷ

“

d

1.483833
„

1 `
1
10 ` 0.3239441

ȷ

“ 1.45358
Applying Eq 11.9, we have:

Ŷh ˘ tp1´ α
2 , df“n´2q ¨ σ̂Ŷhpnewq

8.739663 ˘ tp1´ 0.05
2 , df“10´2q ¨ 1.45358

8.739663 ˘ 2.306004 ¨ 1.45358
8.739663 ˘ 3.351961

p8.739663 ´ 3.351961, 8.739663 ` 3.351961q

p5.387702, 12.09162q

Thus, we are 95% confident that a future observed response, Yhpnewq, given the explanatory
value Xh “ 8.3, will lie in the interval (5.387702, 12.09162).

Performing these operations “by hand” in R we have:

sigma.hat.Y.hat.h.new <-
sqrt(MSE * (1 + 1/n + (x.h - mean(x))ˆ2/sum((x - mean(x))ˆ2)))

alpha <- 0.05 # for 95% CI
t.crit <- qt(1 - alpha/2, n- 2)
margin <- sigma.hat.Y.hat.h.new * t.crit
CI <- c(y.hat.h - margin, y.hat.h + margin)
CI

1 1
5.387702 12.091625

It is also straightforward to obtain prediction intervals for Yhpnewq using the function
predict. Here is the 95% prediction interval for Yhpnewq, for Xh “ 8.3.

predict(model, newdata = data.frame(DBH = 8.3), interval = "prediction", level = 0.95)

fit lwr upr
1 9.478311 6.198898 12.75772
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Here are 95% prediction interval for EpYhpnewqq, for all observed X outcomes.

predict(model, interval = "prediction", level = 0.95)

Warning in predict.lm(model, interval = "prediction", level = 0.95): predictions
on current data refer to future responses

fit lwr upr
1 8.739663 5.387702 12.09163
2 10.586281 7.404008 13.76856
3 11.324929 8.199060 14.45080
4 17.603430 14.642008 20.56485
5 18.342077 15.360417 21.32374
6 19.080724 16.070627 22.09082
7 16.495459 13.548669 19.44225
8 18.342077 15.360417 21.32374
9 20.558018 17.467419 23.64862
10 20.927342 17.811912 24.04277

We can also use R to make a plot of the regression line, with confidence intervals for
EpYhq and the prediction intervals for Yhpnewq overlaid (Fig. 11.7).
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with(volume, plotCI.reg(DBH, volume, xlab = "DBH (inches)", CI.col = 1, PI.col =
1, ylab = expression(paste("Volume (", feetˆ3,")"))))

Call:
lm(formula = y ˜ x)

Coefficients:
(Intercept) x

-21.176 3.693

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

5
10

15
20

DBH (inches)

V
ol

um
e 

(f
ee

t3 )

Figure 11.7. Regression line (solid line), 95% confidence intervals for EpYhq (dashed lines)
and 95% prediction intervals for Yhpnewq (dotted lines) for the cherry tree example.

■

Assignment 11

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
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name and section number.

Use complete sentences when appropriate, and make sure any tables, fig-
ures and computer output you include adhere to class standards (see Syllabus).

Model assumptions

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

1. Go to the Ch. 9 pulldown menu. Click on Regression mechanics.
Mac-users and others who wish to obtain the GUI directly can type:
see.regression.tck().

a) (2 pts) What do the Gaussian curves represent?
b) (1 pt) Do the the variances appear equal for the population curves that

are shown?
c) (2 pts) What do the dots represent?
d) (2 pts) Why is the sample regression line (to the right) different from

the population regression line (to the left)?
e) (4 pts) Make the true slope equal zero. Now the null hypothesis,

H0 : β1 “ 0, is true. Is it still possible to reject H0 at α “ 0.05 using
random sampling? Include an example figure in your homework. What
is this outcome called?

2. Table 11.2 contains data comparing chicken weight gain (in grams) and a
lysine diet additive (in grams). The data are also on Canvas.
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Table 11.2. Chicken lysine diet additive and weight gain data.

Chicken Weight gain (g) Lysine (g)
1 14.7 0.09
2 17.8 0.14
3 19.6 0.18
4 18.4 0.15
5 20.5 0.16
6 21.1 0.23
7 17.2 0.11
8 18.7 0.19
9 20.2 0.23
10 16 0.13
11 17.8 0.17
12 19.4 0.21

a) (6 pts) Create a regression model of weight gain as a function of lysine.
• State the null and alternative hypotheses for the regression.
• Run the regression in R using lm. Use snapshots to show work.
• State your conclusions. Can we reject H0 at α “ 0.05?

b) (4 pts) Check for independence of outcomes in the regression model.
Comment with respect to the diagnostic results and attach graphs and
computer output as necessary.

c) (6 pts) Check for normality of errors in the regression model using
a normal quantile plot and the Shapiro Wilk test. Comment with
respect to the diagnostic results. Attach graphs and computer output
as necessary.

d) (4 pts) Check for homoscedasticity in the regression model using graph
of residuals versus fits. Attach the graph and comment with respect to
the diagnostic results.

e) (4 pts) Check for general linearity of the relationship between weight
gain and lysine eaten by plotting weight gain as a function of lysine.
Attach the graph and comment with respect to the diagnostic results.

3. (2 pts) Based on the results in Q 2b-d, are the results in Q 2a trustworthy?
Why or why not?
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Intervallic estimates

4. (6 pts) Calculate a 90% confidence interval for β1

a) Calculate the confidence interval “by hand”, using R to help. Include
snapshots to show work.

b) Correctly summarize your results.
c) Check you results from Q 4a using confint. Include snapshots to

show work.

5. (6 pts) Calculate a 95% confidence interval for EpYhq, when Xh = 0.18.

a) Calculate the confidence interval “by hand”, using R to help. Include
snapshots to show work.

b) Correctly summarize your results.
c) Check you results from Q 5a using predict. Include snapshots to

show work.

6. (6 pts) Calculate a 95% prediction interval for Yhpnewq , when Xh “ 0.18.

a) Calculate the confidence interval “by hand”, using R to help. Include
snapshots to show work.

b) Correctly summarize your results.
c) Check you results from Q 6a using predict. Include snapshots to

show work.

7. (4 pts) Create a plot of the confidence and prediction intervals for the
population regression line using plotCI.reg from asbio. Insert the plot
into your document. Summarize the figure.

Q1 11pts, Q2 20pts, Q3 2pts, Q4 6pts, Q5 6pts Q6 6pts, Q7 4pts. Total pts: 54.
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12

ANOVA I

Lab 12 Topics

1. Introductory topics in ANOVA

• One-way ANOVA model
• Partitioning sums of squares
• hypothesis testing

Introduction
Recall that with t-tests we were limited to testing the effect of a single categorical explanatory
variable with no more than two categorical levels. For example, in Lab 7 we compared
dissolved O2 in water with respect to locations above and below a riverside community using
a pooled variance t-test. Analysis of Variance (ANOVA) provides a way to quantify
the effect of one or more categorical explanatory variables (factors), each with two or more
categories (factor levels), on a quantitative response variable. Consider Table 12.1, which
lists plant growth data with respect to two factors (Soil N and Grazing). Soil N has three
factor levels (Hi N, Lo N, Control), as does grazing (Hi Grazing, Lo Grazing, Control). We
could analyze these data with ANOVA, but not with a t-test.
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Table 12.1. Data from a hypothetical plant growth experiment.

Plot Plant height (cm) Soil N Grazing
1 15 Control Hi Grazing
2 12 Control Lo Grazing
3 13 Control Control
4 16 Lo N Lo Grazing
5 17 Lo N Hi Grazing
6 19 Lo N Control
7 23 Hi N Lo Grazing
8 22 Hi N Hi Grazing
9 24 Hi N Control

One-way ANOVA Model
In this lab we will consider ANOVA frameworks with a single factor (although this factor
may have many factor levels). These are called one-way ANOVA models. If factor levels
are assigned to experimental units in a randomized fashion we call this a completely
randomized design or CRD. Recall from Lab 1 that this sort of design strengthens causal
inferences concerning the effect of X on Y . This is because the effect of confounding and
lurking explanatory variables on the response is averaged out.

Like regression, ANOVA is a type of general linear model. That is, we assume that Y
can be modeled as linear transformation of X, and the underlying model errors are normally
distributed. In a one-way ANOVA we have the model:

Yij “ µi ` εij (12.1)
where Yij represents the jth observation from the ith factor level, µi represents the ith

factor level true mean and εij is the jth error from the ith factor level. As with regression,
we assume: εij „ Np0, σ2q. The one-way ANOVA model can also be expressed in a slope
intercept form:

Yij “ µ ` αi ` εij (12.2)
where µ is the true grand mean across all combined factor levels and αi is the ith effect

size, and is calculated as:

αi “ µi ´ µ. (12.3)
We will formally address ANOVA model assumptions in Lab 13.

Partitioning the Sums of Squares
Let r be the number of factors levels, i “ 1, 2, . . . , r, and let the number of observations for
the ith factor level be ni. Then, the total number of observations across all r factor levels, n,
is:
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n “

r
ÿ

i“1
ni (12.4)

The sample mean for the ith factor level, Ȳi, estimates the true mean of the ith factor
level, µi. It is calculated as:

Ȳi “

řni

j“1 Yij

ni

(12.5)

The sample grand mean, Ȳ , estimates the true grand mean, µ.

Ȳ “

řr
i“1

řni

j“1 Yij

n
(12.6)

The jth model residual from the ith factor level, ε̂ij, estimates the true error, εij.

ε̂ij “ Yij ´ Ȳi (12.7)
We can partition the total sum of squares (SSTO) in the ANOVA model into two

components: the treatment sum of squares (SSTR), and the sum of squares error
(SSE). SSTR quantifies the variability of the r factor level sample means with respect
to the sample grand mean (Eq 12.8), whereas SSE quantifies the variability of individual
observations around their respective factor level sample means (Eq 12.9). SSTO quantifies
the variability of individual observations with respect to the sample grand mean.

SSTR “

r
ÿ

i“i

nipȲi ´ Ȳ q
2. (12.8)

SSE “

r
ÿ

i“1

ni
ÿ

j“1
pYij ´ Ȳiq

2
“

r
ÿ

i“1

ni
ÿ

j“1
ε̂2

ij. (12.9)

SSTO “ SSTR ` SSE “

r
ÿ

i“1

ni
ÿ

j“1
pYij ´ Ȳ q

2. (12.10)

By dividing SSTR and SSE by their respective degrees of freedom, we obtain the variance
estimates MSTR and MSE. MSE is an unbiased estimator for the error term variance σ2

in the ANONA general linear model (see Eq 12.1 and 12.2).

MSTR “
SSTR

r ´ 1 . (12.11)

MSE “
SSE

n ´ r
. (12.12)
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Hypothesis Testing
The fundamental question we ask with ANOVA is: “do all factor level groups have the same
population mean?” Thus, the hypotheses in a one-way ANOVA are:

H0 : µ1 “ µ2 “ µ3 “ . . . “ µr

HA : At least one µi not equal to the others.

This is equivalent to:

H0 : α1 “ α2 “ α3 “ . . . “ αr “ 0
HA : At least one αi does not equal 0.

where αi is the ith effect size (Eq. 12.3).

To consider these hypotheses, we compare the variability within groups, MSTR, to the
variability between groups, MSE. It may seem strange that we compare the means of
treatments using variances, but this is what ANOVA does. The ANOVA test statistic is
computed as:

F ˚
“

MSTR

MSE
. (12.13)

Recall that an F -test is used to test a null hypothesis of homoscedasticity for two normal
populations (Lab 9). If H0 is true and assumptions for the ANOVA model hold, then F ˚

will be a random outcome from an F -distribution with r ´ 1 numerator degrees of freedom
and n ´ r denominator degrees of freedom. We calculate the P -value as P pX ě F ˚q where
X „ F pr ´ 1, n ´ rq.

If the variability between treatments, MSTR, is large, and the variability within treat-
ments, MSE, is small, then the ANOVA test statistic, F ˚, will also be large and provide
appreciable evidence against the null hypothesis of no difference among treatment means.
Terms discussed thus far are summarized with an ANOVA table (Table 12.2).

Table 12.2. Components of an ANOVA table.

Variation
source df SS MS F ˚

Treatment
(Among groups) r ´ 1 SSTR “

r
ř

i“1
nipȲi ´ Ȳ q

2 MSTR “ SST R
r´1

MST R
MSE

Error
(Between groups) n ´ r SSE “

r
ř

i“1

ni
ř

j“1
pYij ´ Ȳiq

2 MSE “ SSE
n´r

The means of the sampling distributions of MSTR and MSE are:

EpMSTRq “ σ2
`

r
ÿ

i“1
ni

α2
i

r ´ 1
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and
EpMSEq “ σ2

Thus, if H0 is true, and all αis = 0, then EpMSTRq “ EpMSEq “ σ2, and on average F ˚

will equal 1.

Example 12.1
Bean beetles are a pest to bean crops. To determine the best refrigeration temperature

to prevent loss of harvested crops to bean beetles (or freezer burn), an experiment was
conducted. Random samples were taken from a large population of beetles, with each sample
containing 25 female and 25 male beetles. Samples were placed in jars with the same amount
of food. Four chambers were created with a particular level of temperature. To conform to
the protocol of a completely randomized design, five jars were randomly assigned to each of
four temperatures of particular interest. The response variable, counts of beetle eggs, was
tabulated a week after placing the beetles in the chambers (Table 12.3) One jar in treatment
3 broke and was discarded from the experiment.

Table 12.3. Been beetle data for Example 1

Eggs Treatment
11 1
17 1
16 1
14 1
15 1
12 2
10 2
15 2
19 2
11 2
23 3
20 3
18 3
17 3
27 4
33 4
22 4
26 4
28 4

We want to test if any of the treatments produce a different mean number of eggs. We
have the following hypotheses:

H0 : µ1 “ µ2 “ µ3 “ µ4

HA : At least one µi not equal to the others.
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We will use α “ 0.05. We find:

Ȳ1 “

řn1
j“1 Y1j

n1
“

73
5 “ 14.6, Ȳ2 “

řn2
j“1 Y2j

n2
“

67
5 “ 13.4,

Ȳ3 “

řn3
j“1 Y3j

n3
“

78
4 “ 19.5, Ȳ4 “

řn4
j“1 Y4j

n4
“

136
5 “ 27.2

and

Ȳ “

řr
i“1

řni

j“1 Yij

n
“

354
19 “ 18.63.

SSTR “

r
ÿ

i“i

nipȲi ´ Ȳ q
2

“5p14.6 ´ 18.63q
2

` 5p13.4 ´ 18.63q
2

` 4p19.5 ´ 18.63q
2

` 5p27.2 ´ 18.63q
2

“ 588.2211.

SSE “

r
ÿ

i“1

ni
ÿ

j“1
pYij ´ Ȳiq

2

“p11 ´ 14.6q
2

` p17 ´ 14.6q
2

` p16 ´ 14.6q
2

` p14 ´ 14.6q
2

` p15 ´ 14.6q
2

`

p12 ´ 13.4q
2

` p10 ´ 13.4q
2

` p15 ´ 13.4q
2

` p19 ´ 13.4q
2

` p11 ´ 13.4q
2
`

p23 ´ 19.5q
2

` p20 ´ 19.5q
2

` p18 ´ 19.5q
2

` p17 ´ 19.5q
2
`

p27 ´ 27.2q
2

` p33 ´ 27.2q
2

` p22 ´ 27.2q
2

` p26 ´ 27.2q
2

“ 158.2.

SSTO “ SSTR`SSE “ 588.2211`158.2 “ 746.4211.

Thus, we have:

MSTR “
SSTR

r ´ 1 “
588.22

3 “ 196.0737.

MSE “
SSE

n ´ r
“

588.22
15 “ 10.54667.

F ˚
“

MSTR

MSE
“

196.07
10.55 “ 18.59106.

We can summarize our work with an ANOVA table (Table 12.4):

Table 12.4. ANOVA table for Example 1

Source of variation df SS MS F ˚

Between treatments r ´ 1 “ 3 588.22 196.07 18.591
Error (within treatments) n ´ r “ 15 158.2 10.55
Total n ´ 1 “ 18 746.42

To calculate the P -value we find P pX ě F ˚q when X „ F pr ´ 1, n ´ rq. We find:

203



pf(18.59106, 3, 15, lower.tail = F)

[1] 2.584959e-05

Because the P -value is less than α we reject null and conclude that there is at least at
least one µi is not equal to the others.

We perform these operations “by hand” below using R to help. We first calculate the
sums of squares:

beetle <- read.csv("beetle.csv")
y <- beetle[,1]; x <- factor(beetle[,2])
Ybari <- tapply(y, x, mean)
Ybari

1 2 3 4
14.6 13.4 19.5 27.2

ni <- tapply(y, x, length)
ni

1 2 3 4
5 5 4 5

r <- nlevels(x)
n <- sum(ni)
Ybar <- mean(y)

SSTR <- sum(ni * (Ybari - Ybar)ˆ2)
SSTR

[1] 588.2211

fits <- rep(Ybari, ni)
SSE <- sum((y - fits)ˆ2)
SSE

[1] 158.2

SSTO <- SSTR + SSE
SSTO

[1] 746.4211

Here are the mean squares:
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MSTR <- SSTR/(r - 1)
MSTR

[1] 196.0737

MSE <- SSE/(n - r)
MSE

[1] 10.54667

Here is the test statistic and P -value:

F.star <- MSTR/MSE
F.star

[1] 18.59106

pf(F.star, r - 1, n - r, lower.tail = F)

[1] 2.584961e-05

We could have easily obtained this result in just two lines of code:

model <- lm(y ˜ x)
anova(model)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 3 588.22 196.074 18.591 2.585e-05 ***
Residuals 15 158.20 10.547
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

■

Assignment 12

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).
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One-way ANOVA model

• Open R

• Load the asbio package by typing library(asbio) or by going to Pack-
ages > Load packages > asbio.

• Type book.menu() in the R console.

1. Go to the Ch. 10 pulldown menu. Click on ANOVA mechanics.
Mac-users and others who wish to obtain the GUI directly can type:
see.anova.tck().

a) (2 pts) What do you think the three normal distributions represent?
b) (2 pts) What do think the numbers (ones, twos, and threes) inside the

distributions are?
c) (3 pts) The quantities α1, α2, and α3 are called effect sizes. They are

differences of the true factor level means, µi, and the true grand mean,
µ. Given this, are the hypotheses below equal? Why?

H0 : µ1 “ µ2 “ µ3

HA : At least one µi not equal to the others.

H0 : α1 “ α2 “ α3 “ 0
HA : At least one αi does not equal 0.

d) (3 pts) σ2 represents the true variance within the factor level populations.
Alter the σ2 slider. Does it appear as if the populations are assumed to
have equal variances in ANOVA? Why?

e) (2 pts) Based on the GUI sliders, what are two ways to increase the
size of F ˚ (and decrease P -values)?

f) (4 pts) Create a situation in which H0 : µ1 “ µ2 “ µ3 is true. Resample
from the populations repeatedly by clicking on the Refresh button.
• Is it still possible to reject H0 at α “ 0.05? Insert an example plot

into your document.
• What is this called?
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Application of the ANOVA model

2. A large laboratory has four types of devices to determine the pH of soil
samples. The laboratory wants to determine whether there are differences
in the true average readings given by these devices. The lab uses 24 soil
samples with a known pH, and randomly assigns six of these samples to
each of the four devices. The soil samples are tested and the difference in
pH reading of the device from the true (known pH) is measured. These
results are shown in Table 12.5. The data are also in Moodle under the
name pH.csv.

Table 12.5. Data for Question 2.

difference from known pH device
0.079 A
0.738 A
-1.045 A
-0.424 A
0.59 A

-1.244 A
0.006 B
-0.596 B
0.509 B
-0.082 B
-0.442 B
-1.877 B
-0.576 C
-1.54 C
-0.85 C
-0.163 C
-1.457 C
-0.284 C
-0.904 D
0.767 D
-1.239 D
0.017 D
0.056 D
0.142 D

a) (2 pts) Is this a completely randomized design? Why?
b) (2 pts) Correctly state the null and alternative hypotheses.
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c) (5 pts) Calculate Ȳi and ni, (there will be four of each of these) and the
sample grand mean, Ȳ . use R to help with calculations.

d) (3 pts) Calculate the sums of squares SSTR, SSE and SSTO “by hand”
using R to help.

e) (2 pts) Calculate the mean squares MSTR and MSE “by hand” using
R to help.

f) (4 pts) Create an ANOVA Table (refer to Table 12.2) to summarize
your results from d and e. Insert the table into your document.

g) (2 pts) Calculate the P -value, using the function pf in R.
h) (2 pts) What are your conclusions? Do we reject H0 at α “ 0.05?
i) (2 pts) Verify your results in R using the functions lm and anova. Insert

the output into you document.

Q1 16pts, Q2 24pts. Total pts: 40.
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13

ANOVA II

Lab 13 Topics
• Assumptions and diagnostics for ANOVA

Introduction
We learned last week that ANOVA is a type of general linear model. That is, we assume that
Y can be modeled as linear transformation of X, and that the underlying model errors are
normally distributed. In a one-way ANOVA we have the model:

Yij “ µi ` εij (13.1)
where Yij represents the jth observation from the ith factor level, µi represents the

ith factor level true mean and εij is the jth error from the ith factor level. We assume:
εij „ Np0, σ2q. The one-way ANOVA model can also be expressed in a slope intercept form:

Yij “ µ ` αi ` εij (13.2)
where µ is the true grand mean across all combined factor levels and αi is the ith effect

size, and is calculated as:

αi “ µi ´ µ. (13.3)
There are three assumptions for ANOVA:

1. Observations are independent.

2. The error term distributions are normally distributed.

3. The error term distributions are homoscedastic.
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Most of these assumptions concern the form of the error term distribution. Thus, we
generally check model assumptions by by examining the model residuals. This is because
the residuals estimate the true errors, εi. When model-checking, we remain attentive to the
presence of outliers because estimators in general linear models are not resistant to outliers.

Example 13.1
Last week we used a bean beetle dataset to demonstrate one-way ANOVA. We tested the

null hypothesis that all four refrigeration units tested would result in the same true mean
number of bean beetle eggs.

beetle <- read.csv("beetle.csv")
model <- lm(Eggs ˜ factor(Treatment), data = beetle)
anova(model)

Analysis of Variance Table

Response: Eggs
Df Sum Sq Mean Sq F value Pr(>F)

factor(Treatment) 3 588.22 196.074 18.591 2.585e-05 ***
Residuals 15 158.20 10.547
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the P -value, we reject H0 : µ1 “ µ2 “ µ3 “ µ4 at α “ 0.05. However the
P -value, and downstream decisions are only reliable if assumptions for the model are valid.

Independence
To check for temporal independence we can plot model residuals against the order that
observations were taken. If independence is satisfied there should be no patterns to points in
this plot. We obtain residuals using:

e.hat <- resid(model)

Fig 13.1 plots residuals against the assumed order of observations. We assume that the
order of observations given in the dataset represents the actual order that they were recorded.
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plot(1:length(e.hat), e.hat, xlab = "Assumed order of observations",
ylab = "Residuals", type = "o")
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Figure 13.1. Residuals as a function of assumed order in Ex. 1.

There seems to be little pattern to points in the plot, supporting the assumption of
independence.

Normality
We expect noise in ANOVA model have the distribution Np0, σ2q for each level in X. We
can check this assumption with a normal quantile plot of residuals (Fig. 13.2), and the
Shapiro-Wilk test for normality.

for normality.
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qqnorm(e.hat, main = "")
qqline(e.hat)
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Figure 13.2. Normal quantile plot of residuals in Ex. 1.

We run the Shapiro-Wilk test on the model residuals.

shapiro.test(e.hat)

Shapiro-Wilk normality test

data: e.hat
W = 0.97231, p-value = 0.8216

The normal quantile plot and Shapiro-Wilk test support the assumption of normality.

Homoscedasticity
We assume errors have same the distribution, Np0, σ2q, for each factor level in X,. Thus,
we assume that the variance, σ2 is constant among factor levels. To check for equal error
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variances we can plot residuals as a function of fitted values (Fig 13.3). If the assumption of
homoscedasticity is valid there should be no pattern to the points in the plot.

fits <- fitted(model)
plot(fits, e.hat, xlab = "Fitted values", ylab = "Residuals")
abline(h = 0, lty = 2)
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Figure 13.3. Plot of residuals as a function fits in Ex. 1.

We can also formally test for factor level homoscedasticity using the modified Levene’s
test.

library(asbio)
modlevene.test(e.hat, factor(beetle$Treatment))

Modified Levene's test of homogeneity of variances

df1 = 3, df2 = 15, F = 0.2417, p-value = 0.86589

Based on homoscedasticity diagnostic plot and modified Levene’s test, there appears to
be little evidence of heteroscedasticity. All of our assumptions have been satisfied, indicating
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that the ANOVA results for the beetle dataset are valid.

■

Assignment 13

Answer all questions in one MS Word document and submit to Moodle. At
the beginning of the document include the assignment number, the date, your
name and section number.

Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

1. (8 pts) An agricultural researcher wishes to test whether the potassium
content of tree leaves vary from three different varieties of apple trees.
Conduct an ANOVA of the potassium data shown in Table 13.1. . The
data are also in Moodle under the name K.csv.

Table 13.1. Potassium content of tree leaves from three different varieties of apple trees (1, 2,
and 3).

K-content Variety
0.42 Var1
0.4 Var1
0.64 Var1
0.54 Var1
0.44 Var1
0.75 Var2
0.79 Var2
0.9 Var2
0.83 Var2
0.86 Var2
0.65 Var3
0.77 Var3
0.73 Var3
0.86 Var3
0.69 Var3

a) What are your null and alternative hypotheses?
b) Run the test in R, using lm and anova. Include snapshots to show your

work.
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c) Describe your results. Do you reject or fail to reject the null hypothesis
defined in (a)?

d) Store the fitted values and the residuals as R objects. Include snapshots
to show your work.

2. (4 pts) Check for independence of observations:

a) Attach a plot of residuals against against the order of observations given
in the dataset.

b) Describe your results.

3. (7 pts) Check for normality of errors:

a) Create a normal probability plot.
b) What is the null hypothesis for the Shapiro-Wilk test?
c) Run the Shapiro-Wilk test using shapiro.test. Attach your results.
d) Interpret your results in (a) and (c). Do you fail to reject the null

hypothesis defined in (b)? What does this mean?

4. (7 pts) Check for homoscedasticity of errors:

a) Create a diagnostic plot for homoscedasticity by plotting residuals
against fitted values.

b) What is the null hypothesis for the Levene’s test?
c) Run the Levene’s test using modlevene.test in asbio. Attach your

results.
d) Interpret your results in (a) and (c). Do you fail to reject the null

hypothesis defined in (b)? What does this mean?

5. (8 pts) The one way ANOVA model is defined in Eq 13.2.

a) Why is this a linear model?
b) What is Yij?
c) What is αi?
d) What do we mean when we say εij „ Np0, σ2q. Be as detailed as

possible.
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Q1 8pts, Q2 4pts, Q3 7pts, Q4 7pts, Q5 8pts. Total pts: 34.
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14

ANOVA III

Lab 14 Topics

1. Family-wise type I error

2. Simultaneous pairwise comparisons in the context of
ANOVA

• Fisher’s LSD
• Tukey’s HSD

Introduction
Assume that we have conducted an ANOVA and have rejected H0 : µ1 “ µ2 “ . . . “ µr.
While we conclude that at least one µi is not equal to at least one of the others, we do not
know which particular factor levels should be considered different. In addition, we don’t
know if there is a trend among µis with some less than or greater than others. To acquire
this information we will conduct what are called post hoc (Latin for “after this”) tests.

Pairwise Comparisons
Pairwise comparisons are the most common type of post hoc test. Pairwise comparisons
are generally used to test null hypotheses that all possible differences of factor level means,
considered one pair of differences at a time, will equal zero. This can be stated summarily as:

H0 : µi “ µi1

HA : µi ‰ µi1

where µi1 indicates a factor level true mean other than the ith factor level true mean.
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Let r be the number of factor levels. There will always be
`

r
2

˘

“ r2´r
2 possible pairwise

comparisons.
As an example of a single pairwise test, suppose we have rejected the omnibus ANOVA

null hypothesis, and we are interested in the true difference, D, between two particular factor
level population means, say µ1 ´ µ2. To estimate D we use the difference of sample means,
D̂ “ Ȳ1 ´ Ȳ2. This difference will be an unbiased estimator for D.

Because in ANOVA we assume all of the factor level populations have the same variance,
σ2, and because MSE is an unbiased estimator of σ2, the estimator for σ2

D̂
(i.e., the variance

of the sampling distribution of D̂), is:

σ̂2
D̂

“ MSE

ˆ

1
n1

`
1
n2

˙

(14.1)

where MSE “
řn

i“1 ε̂2
i {pn ´ rq can be obtained directly from the the ANOVA model.

To test the null hypothesis H0 : D “ 0, we calculate the test statistic:

t˚
“

D̂
b

σ̂2
D̂

“
Ȳ1 ´ Ȳ2
b

σ̂2
D̂

. (14.2)

We calculate the P -value as 2 ¨ P pT ě |t˚|q where T „ tpn ´ rq. Note Eq. 14.1 and 14.2
have the exact same format as a pooled variance t-test (Lab 7). The only difference here is
that more than two factor levels will be used in computing MSE.

It is important to note that pairwise comparisons are not the only possible post post hoc
comparisons. For instance, given a factor with three levels, level 1 could be compared to the
combined (average) effect of levels 2 and 3.

It may be tempting to look at only the comparisons one is interested in after the data are
gathered and summaries are examined. However, this is statistically incorrect and is known
as data snooping, (a lack of independence in tests due to the cherry-picking results). Data
snooping occurs because all possible comparisons are being made implicitly in the mind of
the investigator as he or she reviews the data while deciding which tests would make his or
her experiment look better. Thus, we need to either specify what contrasts we are interested
in before we sample, or look at an entire family of comparisons (e.g., all possible pairwise
tests) in our post hoc tests.

Family-wise Type I Error
The implementation of multiple post hoc tests presents a problem. Recall that a type I
error occurs when a null hypothesis is rejected when it is actually true (Lab 6), and that
the acceptable probability of type I error for a test is defined with the significance level, α.
When multiple related null hypothesis tests are run, then multiple related type one errors
(false discoveries) can occur. The family-wise error rate (FWER) is the probability of
making one or more type I errors when performing multiple null hypothesis tests. Given m
independent tests, this probability will be:

1 ´ p1 ´ αq
m (14.3)
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where α is the significance level to be used for each test. Thus, five independent tests,
each using α “ 0.05, will have a family-wise α of 1´ p1´αq5 “ 0.226. That is, the probability
of falsely rejecting H0 at least once across all five tests will be 0.226.

The probably of ballooning FWER due to multiple comparisons has resulted in the
development of many different approaches. I will only consider two methods in the context
of all possible pairwise comparisons here: Fisher’s LSD and Tukey’s HSD.

Fisher’s LSD Procedure
Fisher’s least significant difference (LSD) method fixes the probability of a false rejection
of H0 for each single pair of means being compared. It does not, however, control the overall
probability of false rejection of H0 for comparisons of all other pairs of means. The LSD
procedure is essentially a series of pooled variance t-tests, using the ANOVA MSE as the test
statistic pooled variance. In fact, the only family-wise adjustment used in the LSD method is
the requirement of a rejection of the omnibus ANOVA H0 hypothesis.

The method, developed by Fisher (1936), has the following steps:

1. We first need to reject H0 : µ1 “ µ2 “ . . . “ µr. If we can’t do this, we can go no further
in factor level comparisons. This caveat is often referred to as Fisher’s ”protected” LSD.

2. We define the least significant difference to be the observed difference between sample
means necessary to reject H0 : µi “ µi1 as:

LSDi,i1 “ t1´pα{2q,n´r ¨

b

σ̂2
D̂

(14.4)

where σ̂2
D̂

is given in Eq 14.1.

3. Compare all pairs of means.

4. If |Ȳi ´ Ȳi1 | ě LSDi,i1 for a particular comparison, then we reject H0 : µi “ µi1 .

Example 14.1
Humans are born with rudimentary reflexes for walking, but these largely disappear by

the age of eight weeks due to disuse. Accordingly, walking movements must be relearned by
an infant following a significant passage of time, through a process of trial and error. Zelazo
et al. (1972) performed a series of experiments to determine whether certain exercises could
allow infants to maintain their walking reflexes, and allow them to walk at an earlier age.
Study subjects were 24 white male infants from middle class families. Infants were randomly
assigned to one of four groups immediately following birth.

• Active exercise (AE): parents were taught and were told to apply exercises that would
strengthen the walking reflexes of their infant.
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• Passive exercise (PE): parents were taught and told to apply exercises unrelated to
walking.

• Test-only (TO): investigators did not specify any exercise, but visited and tested the
walking reflexes of infants in weeks 1 through 8. This treatment was established to
account for the potential effect of the walking reflex tests themselves and thus served
as a control group.

• Control (C): no exercises were specified, and infants were only tested at weeks one and
eight.

The data are in asbio in a dataframe called baby.walk.

library(asbio)
data(baby.walk)

Running the ANOVA model we have:

model <- lm(date ˜ treatment, data = baby.walk)
anova(model)

Analysis of Variance Table

Response: date
Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 16.602 5.5340 3.5676 0.03482 *
Residuals 18 27.921 1.5512
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because we reject H0 : µP E “ µAE “ µT O “ µC we can proceed to Fisher’s LSD pairwise
comparisons.

Here are the factor level means, Yi and factor level sample sizes, ni, the number of factor
levels, r, and the total sample size, n.
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means <- tapply(baby.walk[,1], baby.walk[,2], mean)
ns <- tapply(baby.walk[,1], baby.walk[,2], length)

means

AE C PE TO
10.12500 12.35000 10.65000 11.70833

ns

AE C PE TO
6 5 5 6

r <- nlevels(baby.walk[,2])
r

[1] 4

n <- sum(ns)
n

[1] 22

MSE can be obtained from the linear model:

MSE <- sum(resid(model)ˆ2)/(n - r)
MSE

[1] 1.551157

We have pr2 ´ rq{2 “ p16 ´ 4q{2 “ 6 possible pairwise comparisons. If we had an equal
number of samples for each treatment then we would only have to calculate LSD once.
However, there are two different sample sizes. We have n “ 6 for the AE and TO groups and
n “ 5 for the C and PE groups. Defining α “ 0.05, we have:

LSDAE,T O “ t1´pα{2q,n´r ¨

d

MSE

ˆ

1
nAE

`
1

nT O

˙

“ t0.975,18 ¨

d

1.551157 ¨

ˆ

2
6

˙

“ 2.100922 ¨

d

1.551157 ¨

ˆ

2
6

˙

“ 1.510717
We obtain t1´pα{2q,n´r using the t inverse CDF.
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alpha = 0.05
qt(1 - alpha/2, n - r)

[1] 2.100922

LSDC,P E “ t1´pα{2q,n´r ¨

d

MSE ¨

ˆ

1
nC

`
1

nP E

˙

“ t0.975,18 ¨

d

1.551157 ¨

ˆ

2
5

˙

“ 2.100922 ¨

d

1.551157 ¨

ˆ

2
5

˙

“ 1.654908
For all other comparisons, sample sizes are 5 and 6 for the two groups. Thus,

LSDAE,C “ LSDAE,P E “ LSDC,T O “ LSDP E,T O “ 2.100922 ¨

d

1.551157 ¨

ˆ

1
6 `

1
5

˙

“ 2.100922 ¨

d

1.551157 ¨

ˆ

11
30

˙

“ 1.584454

Pairwise mean differences can be quickly computed for all pairs, using:

mean.diff <- round(abs(outer(means, means, "-")),3)
mean.diff[upper.tri(mean.diff)] <- ""
data.frame(mean.diff)

AE C PE TO
AE 0
C 2.225 0
PE 0.525 1.7 0
TO 1.583 0.642 1.058 0

1. For AE and C, we have |ȲAE ´ ȲC | “ 2.225 and LSDAE,C “ 1.584454. Because
|ȲAE ´ ȲC | ą LSDAE,C , we reject H0 : µAE “ µC .

2. For AE and PE, we have |ȲAE ´ ȲP E| “ 0.525 and LSDAE,C “ 1.584454. Because
|ȲAE ´ ȲP E| ă LSDAE,P E, we fail to reject H0 : µAE “ µP E.

3. For C and PE, we have |ȲC´ȲP E| “ 1.7 and LSDC,P E “ 1.654908. Because |ȲC´ȲP E| ą

LSDC,P E, we reject H0 : µC “ µP E.
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4. For AE and TO, we have |ȲAE ´ ȲT O| “ 1.583 and LSDAE,T O “ 1.510717. Because
|ȲAE ´ ȲT O| ą LSDAE,T O, we reject H0 : µAE “ µT O.

5. For C and TO, we have |ȲC ´ ȲT O| “ 0.642 and LSDC,T O “ 1.584454. Because
|ȲC ´ ȲT O| ă LSDP E,T O, we fail to reject H0 : µC “ µT O.

6. For PE and TO, we have |ȲP E ´ ȲT O| “ 1.058 and LSDP E,T O “ 1.584454. Because
|ȲP E ´ ȲT O| ă LSDP E,T O, we fail to reject H0 : µP E “ µT O.

We can quickly obtain these results using the function pairw.anova from asbio.

LSD <- pairw.anova(baby.walk[,1], baby.walk[,2], method = "lsd")
LSD

95% LSD confidence intervals

LSD Diff Lower Upper Decision Adj. p-value
muAE-muC 1.58443 -2.225 -3.80943 -0.64057 Reject H0 0.00856
muAE-muPE 1.58443 -0.525 -2.10943 1.05943 FTR H0 0.49523
muC-muPE 1.65489 1.7 0.04511 3.35489 Reject H0 0.04467
muAE-muTO 1.5107 -1.58333 -3.09403 -0.07264 Reject H0 0.04095
muC-muTO 1.58443 0.64167 -0.94277 2.2261 FTR H0 0.40604
muPE-muTO 1.58443 -1.05833 -2.64277 0.5261 FTR H0 0.17754

The function also provides confidence intervals for the true difference, D. Note that in
cases when 0 is in the interval we fail to reject H0 : D “ 0. The function also allows graphical
summarization of the comparisons (Fig 14.1, 14.2).
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plot(LSD, type = 1, ylab = "Onset of walking (days)")

Bars are means. Errors are SEs.

The population means of factor levels with the same letter are not
significantly different at alpha = 0.05 using the Fisher LSD method.
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Figure 14.1. The population means of factor levels with the same letter are not significantly
different at alpha = 0.05 using the Fisher LSD method. Bars are means. Errors are SEs.
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plot(LSD, type = 2, ylab = "Onset of walking (days)")
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Figure 14.2. LSD 95% confidence intervals for the true difference, D.

■

Tukey’s HSD Procedure
Tukey’s honest significant difference (HSD) method (Tukey, 1949) explicitly controls
FWER for the family of all possible pairwise tests. Thus, if we are using 100 pairwise
comparisons there will be at most only a 5% probability of the overall family of tests being
in error (i.e. that one or more of the 100 pairwise comparisons incorrectly reject H0). In
addition, Tukey’s procedure provides narrower confidence intervals than two other popular
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methods that control FWER (Scheffé and Bonferroni) when all possible pairwise comparisons
are being considered.

When sample sizes are equal, then the Tukey HSD FWER is exactly α. When sample
sizes are not equal, the FWER is less than α. Thus, the procedure is conservative when
sample sizes are not equal. As before, rejection of the omnibus ANOVA null hypothesis
should occur before proceeding with Tukey HSD comparisons.

Under the Tukey HSD approach we reject H0 : µi “ µi1 if |q˚| ě qp1 ´ α, r, n ´ rq, where:

q˚
“

?
2D̂

b

σ̂2
D̂

(14.5)

and q indicates the inverse CDF for the studentized range distribution; a distribution
derived by Tukey (1949). The studentized range distribution has three parameters, the
lower-tailed probability 1 ´ α, r “ the number of factor levels being compared, and the
degrees of freedom error in the ANOVA model, i.e., n ´ r. We calculate σ̂2

D̂
using Eq. 14.1.

We can also calculate Tukey’s p1 ´ αq100% confidence intervals for D using:

D̂ ˘ T ¨ σ̂D̂ (14.6)
where

T “
1

?
2

qp1 ´ α, r, n ´ rq (14.7)

Example 14.2
We will reuse the baby.walk data of Exercise 1 to demonstrate Tukey’s HSD method.
The value for qp1 ´ α, r, n ´ rq is 3.996978.

alpha = 0.05
q <- qtukey(1 - alpha, r, n - r)
q

[1] 3.996978

1. For AE and C, we have

q˚
“

?
2 ¨ D̂

a

MSEp11{30q

“

?
2 ¨ 2.225
0.754 “ 4.220.

Because q˚ ą q, we reject H0 : µAE “ µC .
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2. For AE and PE, we have

q˚
“

?
2 ¨ D̂

a

MSEp11{30q

“

?
2 ¨ 0.525
0.754 “ 0.985.

Because q˚ ă q, we fail to reject H0 : µAE “ µP E.

3. For C and PE, we have

q˚
“

?
2 ¨ D̂

a

MSEp2{5q

“

?
2 ¨ 1.7

0.787 “ 3.054.

Because q˚ ă q, we fail to reject H0 : µC “ µP E.

4. For AE and TO, we have

q˚
“

?
2 ¨ D̂

a

MSEp2{6q

“

?
2 ¨ 1.583
0.719 “ 1.261.

Because q˚ ă q, we fail to reject H0 : µAE “ µT O.

5. For C and TO, we have

q˚
“

?
2 ¨ D̂

a

MSEp11{30q

“

?
2 ¨ 0.642
0.754 “ 3.189.

Because q˚ ă q, we fail to reject H0 : µC “ µT O.

6. For PE and TO, we have

q˚
“

?
2 ¨ D̂

a

MSEp11{30q

“

?
2 ¨ 1.058
0.754 “ 2.003.

Because q˚ ă q, we fail to reject H0 : µP E “ µT O.

Note that Tukey’s method gives a more conservative (and safe, with respect to family-wise
type I error) interpretation of the data compared to LSD. LSD found two additional significant
pairwise differences.

One again, we can quickly use pairw.anova to get these results. Graphical summaries
are shown in Fig 14.3 and 14.4.
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tukey <- pairw.anova(baby.walk[,1], baby.walk[,2])
tukey

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
muAE-muC -2.225 -4.35648 -0.09352 Reject H0 0.038997
muAE-muPE -0.525 -2.65648 1.60648 FTR H0 0.897224
muC-muPE 1.7 -0.52625 3.92625 FTR H0 0.172932
muAE-muTO -1.58333 -3.61562 0.44895 FTR H0 0.160457
muC-muTO 0.64167 -1.48981 2.77314 FTR H0 0.829542
muPE-muTO -1.05833 -3.18981 1.07314 FTR H0 0.513366
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plot(tukey, type = 1, ylab = "Onset of walking (days)")

Bars are means. Errors are SEs.

The population means of factor levels with the same letter are not
significantly different at alpha = 0.05 using the Tukey HSD method.
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Figure 14.3. The population means of factor levels with the same letter are not significantly
different at alpha = 0.05 using the Tukey HSD method. Bars are means. Errors are SEs.
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plot(tukey, type = 2, ylab = "Onset of walking (days)")
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Figure 14.4. Tukey HSD 95% confidence intervals for the true difference, D.

■

Assignment 14

Answer all questions in one MS Word document and upload it to Canvas. At
the beginning of the document include the assignment number, the date, your
name and section number.
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Use complete sentences when appropriate, and make sure any tables, figures
and computer output you include adhere to class standards (see Syllabus).

1. (2 pts) Define Family-wise Error Rate (FWER)

2. (2 pts) Define data snooping

3. (2 pts) Define D

4. (2 pts) Define D̂

5. (9 pts) In Lab 13 we examined data describing counts of five different strains
of methicillin resistant Staphylococcus aureus (MRSA). As a refresher, re-
test that individual strains differ in true mean counts. Use α “ 0.05.

a) What are your omnibus ANOVA hypotheses?
b) Run the omnibus ANOVA in R, using anova(lm()). Attach the results.
c) Can we proceed with post hoc tests? Why?
d) How many pairwise comparisons among factor levels are possible?

6. (15 pts) For the analysis in Q. 5 run all possible pairwise tests with Fisher’s
LSD method “by hand” using R to help. Use α “ 0.05.

a) What does the null hypothesis H0 : µi “ µi1 mean?
b) What is calculated value of MSE from the ANOVA?
c) What is the calculated value of LSD (see Eq. 14.4)? You will only need

to calculate LSD once because the design is balanced.
d) To summarize your analysis, fill out a facsimile of the Table below in

your homework and discuss the results.

Factor levels
under comparison |D̂| “ |Ȳi ´ Ȳi1 | LSDi,i1

Decision for H0 : µi “ µi1

Reject H0 if |D̂| ě LSD

FTR H0 if |D̂| ă LSD
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e) Verify your LSD comparisons using pairw.anova from asbio. Include
snapshots.

f) Use a pairw.anova object to create a graphical summary of your LSD
comparisons. Use type = 1 when plotting. Attach the graph and
briefly describe it.

7. (15 pts) Run all possible pairwise tests using Tukey’s confidence intervals
“by hand” using R to help. Use α “ 0.05.

a) Calculate T (see Eq. 14.7). You will need to use the function qtukey
to find q.

b) Calculate σ̂D̂. You will only have to calculate this once because the
design is balanced.

c) To summarize your analysis, fill out a facsimile of the Table below in
your homework and discuss the results.

Factor levels
under comparison D̂ “ Ȳi ´ Ȳi1

Confidence intervals
D̂ ˘ T ¨ σ̂D̂

Decision for H0 : µi “ µi1

Reject H0 if 0 is not in interval
FTR H0 if 0 is in interval

d) Verify your Tukey HSD comparisons using pairw.anova from asbio.
Include snapshots.

e) Use a pairw.anova object to create a graphical summary of your Tukey
comparisons. Use type = 2 when plotting. Attach the graph and briefly
describe it.

8. (2 pts) Which method, Fisher’s LSD or Tukey’s HSD, appears to be more
conservative with respect to FWER? Hint: confidence interval methods
with narrower intervals for the same level of confidence are less conservative.

Q1 2pts, Q2 2pts, Q3 2pts, Q4 2pts, Q5 9pts, Q6 15pts, Q7 15pts, Q8 2pts. Total pts: 49.
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Index of Terms

Abscissa, 164
Affirming the consequent, 104
α, see Significance level
Alternative hypothesis, 104
HA, see Alternative hypothesis
Analysis of variance (ANOVA), 198

Post hoc comparisons
False discoveries, 218
Family of comparisons, 218
Family-wise error rate (FWER), 218
Fisher’s least significant difference

(LSD), 219
Pairwise comparisons, 217
Tukey’s honest significant difference

(HSD), 225
as a general linear model, 199
assumptions for, 209
Effect size, 199
Hypothesis testing, 201
One way ANOVA, 199
Partitioning sums of squares, 200

Arithmetic mean, see Sample mean
asbio, 40

Bayes theorem, 32
Bernoulli distribution, 44
Bias, 2, 64
Binomial coefficeint, 46
`

n
x

˘

, see Binomial Coefficient
Binomial distribution, 46
Breakdown point, 68

Causality, 4
Central limit theorem, 88

Coefficient of determination, 168
Combinatorial analysis, 32
Command line (programming), 10
Confidence interval, 90

for µ, σ2 unknown, 119
Confidence interval

for µ, σ2 known, 90
Consistency, 64
Continuous uniform distribution, 51
Cook’s distance, 187
Correlation, 5
Cumulative density function (CDF), 43

Data, 3
Data snooping, 218
Deduction, 102
Degrees of freedom, 66
Density, 41
Denying the consequent, 103
Disjoint, see Mutually exclusive

EpXq, see Population mean
Efficiency, 64, 68
Empirical rule, 64, 83
Empirical science, 1
Estimator, 64

Point estimator, 65
location exstimator, 65
scale exstimator, 65
shape exstimator, 65

Excel, 9
Experimental design, 6

Balanced design, 8
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Completely randomized design (CRD),
8, 199

Observational study, 8
Randomized experiment, 8

Experimental units, 3
Extrapolated, 165

F -distribution, 140
Factor levels, 198
Factorial, 46
Factors, 198

Gamma function: Γp.q, 118
General linear model, 167

Heteroscedasticity, 127
Histogram, 15
Homoscedasticity, 127, 140

assumption in general linear models,
185, 213

diagnostics for
F -test, 141
Modified Levene’s test, 141
Residual plot, 185, 213

Independence, 30
assumption in general linear models,

182, 210
Inference, 1

Causal, 6
to the population, 6

Kurtosis, 72

Leverage, 187
Linear transformation, 75
Linearity, 185
Log transformation, 146

Mann-Whitney test, see Wilcoxon
rank-sum test

Mean squared error (MSE)
for ANOVA, 200
for pooled variance t-test, 123
for regression analysis, 169

Method of moments, 73
Modus tollens, see Denying the consequent

Multiplication principal, 32
Mutually exclusive, 28

Nonparametric, 152
Normal distribution, 81

mean of (µ), 82
standard deviation of (σ), 82
Standard normal, 84
variance of (σ2), 82
Z-distribution, see Standard normal

distribution
Normality

diagnostics for
Normal probability plot, 143, 183,

211
Normal quantile plot, see Normal

probability plot
Shapiro-Wilk test, 144, 183, 211

Null distribution, 106
Null hypothesis, 104
H0, see Null hypothesis

Objectivity, 2
One sample z-test, 108
One-tailed test, 106
Ordinary least squares (OLS), 168
Ordinate, 164
Outlier, 68, 187

P -value, 105
Parameter, 44, 62
Parameteric, 44
Pearson correlation coefficient, 168
Percentile, 68
Poisson distribution, 49
Polynomial regression, 186
Pooled variance, see Mean squared error
Population (statistical), 6
Population interquartile range, 71
Population kurtosis, 72
γ2, see Population kurtosis
Population mean, 62
Population median, 68
Population skewness, 72
γ1, see Population skewness
Population standard deiviation, 63
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Population variance, 63
Probability, 24

Conditional, 30
Degrees of belief conception, 26
Frequentist conception, 25

Probability density function (PDF), 41
Probability mass function (PMF), 41

R, 9
Assignment operator, 11
Object, 11

r, see Pearson correlation coefficient
r2, see Coefficient of determination
Random variable, 3
Randomization, 6
Rank transformation, 153
Rank-based permutation tests, 152
Regression analysis, 164

assumptions for, 179
confidence intervals for, 188
Error term distribution, 166
Hypothesis testing, 168
Population slope (β1), 165, 168
Population Y -intercept (β0), 165
prediction intervals for, 191
Regression line, 164
Residual, 168
Sample slope (β̂1), 167
Sample Y -intercept (β̂0), 167
Simple linear regression, 164

Replication, 7
Robust estimators, 68

S, see Sample standard deviation
SDpXq, see Population standard deviation
S2, see Sample variance
σX̄ , see Standard error of mean
Sample

Independence, 7
Sample interquartile rank, 71
Sample kurtosis, 73
G2, see Sample kurtosis
Sample mean, 19, 65
Sample median, 68
Sample skewness, 73

G1, see Sample skewness
Sample standard deviation, 66
Sample standard error, 119
Sample variance, 66
Sampling design, 6

Simple random sample, 7
Sampling distribution, 87
Satterthwaite procedure, 127
Set theory, 25

Complement, 27
Conditionality, 30
Element, 25
Experiment, 25
Intersect, 29
X, see Intersect
Outcome, 25
Set, 25
Trial, 25
Union, 29
Y, see Union
Universal set (Universe), 25

Significance level, 90, 105
Significance testing, 105

Power, 112
Type I error, 105, 112
Type II error, 112

Skew, 72
Spatial dependence, 182
Standard error of mean, 88
Statistic, 64
Strictly permutational tests, 159
Studentized range distribution, 226
Sum of squares, 19, 66

t-distribution, 118, 119
t-test, 121

assumptions for, 139
Paired t-test, 130
Pooled variance t-test, 122
structuring of hypotheses for, 122
Student t-test, see Pooled variance

t-test
Welch t-test, 127

Temporal dependence, 182
Test statistic, 105
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Two-tailed test, 106

V arpXq, see Population variance
Variable, 3, 24

Categorical, 4
Confounded, 8
Explanatory, 4
Ordinal, 4
Quantitative, 4

continuous, 4
discrete, 4

Random, 24
Response, 4

Venn diagram, 28

Wilcoxon rank-sum distribution, 153
Wilcoxon rank-sum test, 152

X̄, see Sample mean
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Index of R Operators and Functions

*, 21
+, 21
-, 21
/, 21
<, 22
<-, 21
<=, 22
==, 22
>, 22
>=, 22
[], 23

abline, 173
anova, 205
asbio:book.menu, 40
asbio:ci.mu.t, 120
asbio:kurt, 80
asbio:MC.test, 160
asbio:modlevene.test, 143, 151
asbio:pairw.anova, 223
asbio:qq.Plot, 144, 151
asbio:one.sample.z, 112
asbio:shade.norm, 110
asbio:skew, 80
asbio:Venn, 40

c, 21
choose, 47

dbinom, 45, 61
dchisq, 61
df, 61
dnorm, 61, 101
dpois, 51, 61

dt, 61
dunif, 61

exp, 21

factorial, 47
file.choose, 17, 22

hist, 23

install.packages, 40
IQR, 72

library, 40
lm, 174, 178
log, 21, 146

mean, 67, 80
median, 69, 80

par, 23
pf, 205
plot, 23
plot.lm, 187
pnorm, 101
pt, 125
pwilcox, 157

qnorm, 91, 101
qqline, 144, 151, 183
qqnorm, 144, 151, 183
qt, 120
qtukey, 226
quantile, 72

rank, 156
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read.csv, 17, 22, 125
rnorm, 101

sd, 67, 80
shapiro.test, 145, 151
sqrt, 21
sum, 21

t.test, 126, 137
tapply, 80, 125

var, 67, 80
var.test, 142, 151

wilcox.test, 158
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