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Preface

This book is contracted to Chapman & Hall/CRC, and will be officially published in 2026. It is

currently a draft. Comments are welcome at GitHub or by email. The book is licensed under

the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

What this book is about

This book explores the ever expanding universe of R. Specifically, it considers:

• The historical development of the R language, the R engine, and the installation of R (Ch

1)

• R objects and the RStudio IDE (Ch 2)

• R data storage entities, and the import and export of user data files (Ch 3)

• Data management approaches using base R (Ch 4) and the tidyverse (Ch 5)

• R approaches to graphics, includingbaseplottingmethods (Ch6) and theggplot2package

(Ch 7)

• R functions (Ch 8) including loops, and the creation of user-defined classes and generic

methods

• Interfacing other languages (e.g., C, Fortran, C++, SQL, Python) and software (Ch 9)

• Building custom R packages (Ch 10)

• R GUIs and web applications including approaches from the packages tcltk, plotly and

shiny (Ch 11)

• The fundamental ways that R interacts with your computer (Ch 12)

While this book covers a lot of ground, clearly many other topics could be considered. Subjects

explored are those I have found to be particularly useful or interesting during my 20+ years of

using R as a biologist and statistician. Chapters concerning advanced topics (i.e., Chs 8-12) are

intended to be starting points for further exploration, and the reader is directed to additional

resources when necessary.

This book emphasizes that R is an important programming language. While ignored in some

(older) computer language histories (e.g., Boutin et al., 2002), R has had a large, devoted

vii
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following for decades and its computational engine and language can be clearly tied to core

advances and important individuals in computer and data science. Further, from its inceptionR

has been a tool formetaprogrammingwherein code is shared and modified programmatically.

For instance R has a wide variety of APIs for languages like C, Fortran, C++, Java, Python, and

many others.

Individuals from the natural sciences, particularly biologists, are likely to find this book more

useful than individuals from other backgrounds because coding examples and applications

are generally biological. Non-biologists may find, however, that examples readily extend to

other settings.

What this book is not about

Notably, although statistics is the primary focus/purpose of R, the primary emphasis of this

book is not statistics. Instead I focus on the R language, and the characteristics, capabilities,

and extensions of the R system. I take this approach because: 1) coverage of non-statistical

topics is challenging in and of itself, and 2) the responsible introduction of statistical algorithms

from any program or language (including R) should be accompanied by detailed information

concerning the statistical procedures. Many pedagogic resources exist for the statistical

application of R. These include: Aho (2014) (the pedagogic statistical companion to this book),

Venables and Ripley (2002), (Faraway, 2004, 2016), Crawley (2012), and Fox andWeisberg

(2019), among others. It should be noted that while this text does not focus on inferential

statistical methods, it does emphasize methods for handling, summarizing and displaying

empirical data, and these steps generally serve as a companion and prerequisite to formal

descriptive and inferential analyses.

Distinguishing Characteristics of This Book

Many other sources have emphasized programming and data science aspects ofR, while largely

ignoring statistics, including definitive texts (e.g., Chambers, 2008, 2020; Wickham, 2016,

2021), and manuals (R Core Team, 2024a,b,c), or have focused on particular, non-statistical R

components, including graphics (Wickham, 2016; Murrell, 2019) and web-based applications

(Wickham, 2021; Sievert, 2020). This book is a brave/foolish attempt to amalgamize and distill

what I consider important information from this collection, while occasionally emphasizing

topics earlier works have ignored. For instance, Wickham (2019) admirably emphasizes many

foundational and advanced programming ideas in R, but does not thoroughly consider some

important programming extensions, including powerful syntheses with Python, Tcl, and Qt

via C++. Unlike many other texts, this book also adheres to the format of a textbook, with

numerous worked examples, and exercises at the end each chapter.
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Conventions

This document has been created with Windows users of R in mind. I chose Windows as a

demonstration operating system (OS) because it is currently the most widely used system

manager for desktop computers and laptops by a wide margin (Wikipedia, 2025d)1. However,

in the vast majority of cases, R instructions and examples provided herein will be extendable

to other operating systems. In cases when this is not true I note steps to address those

inconsistencies. A notable exception occurs for shell-driven creation of executable files in Ch 9.

In this case, Windows command line (cmd.exe) processes will often differ fundamentally from

Unix-alikes and require workarounds2.

Several text-formatting conventions are followed throughout the book. R package names and

important terms are italicized. Function names, function arguments, base types, and objects

are written in blocked Courier font. Functions obtained from packages have their names

followed by parentheses, e.g., function.name(). Operations from R and other programming

languages are generally written into “chunks” whose contents can be copied to a clipboard

using an icon located at the top right of the chunk (HTML versions of book only). For example:

print("Hello, world!")

The output from an evaluated chunk is generally printed immediately below. For example:

[1] "Hello, world!"

If you are reading an HTML version of this document generated using bs4_book(), then R
function names will generally be hyperlinked to their documentation. For example: print()
would be hyperlinked. In this case, footnotes will be inline, potentially requiring that links

within footnotes be accessed using Enter + Click.

Acknowledgements and Corrections

I thank individuals who have reviewed/edited this book in various forms including Lauren

Tucker and Adam Zambie. Corrections and comments are welcome, and can be sent using the

book’s GitHub site.

1On the other hand, Linux is the most common OS for web-servers, supercomputers, and smartphones (via

the Android OS, which uses the Linux kernel) (Wikipedia, 2025d).
2Specific consideration of Unix/Linux implementations of R in high performance computing are provided in

Ch 12.
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Chapter 1

Welcome to R

“I believe that R currently represents the best medium for quality software in support

of data analysis.”

- John Chambers, Developer of S

“R is a real demonstration of the power of collaboration, and I don’t think you could

construct something like this any other way.”

- Ross Ihaka, original co-developer of R

1.1 What is R?

R is a computer language and an open source setting for statistics, data management, com-

putation, and graphics. The outward mien of the R-environment is minimalistic, with few

menu-driven interactive facilities (nomenus exist for some implementations of R). This is in

contrast to conventional statistical software consisting of black box, menu-dominated, often

inflexible tools. The simplicity of R allows one to easily evaluate, edit, and build procedures

for data analysis, and many other purposes.

1.2 R and Biology

I am a statistical ecologist, so this book was written with natural scientists, particularly bi-

ologists, in mind. R is useful to biologists for three major reasons. First, it provides access

to a large number of cutting edge statistical, graphical, and organizational procedures, many

of which have been designed specifically for biological research. Second, biological datasets,

including those from genetic and spatiotemporal research can be extensive and complex. R

can readily manage and analyze such data. Third, analysis of biological data often requires

analytical and computational flexibility. R allows one to “get under the hood”, look at the

code, and check to see what algorithms are doing. If, after examining an R-algorithm we are

unsatisfied, we can generally modify its code or create new code to meet our specific needs.

1



2 CHAPTER 1. WELCOME TO R

1.3 Popularity of R

Because of its freeware status, the overall number of people using R is difficult to determine.

Nonetheless, the R-consortium website estimates that there are currently more than two

million active R users. The r4stats website houses up-to-date surveys concerning the popu-

larity of analytical software. These surveys (accessed 10/23/2024) indicate that R is often

preferred among data scientists for big data projects and data mining. R is also one of the

most frequently cited statistical environments in scholarly articles, one of the most frequently

used languages on the GitHub repository, and one of the most frequently discussed languages

on Stack Overflow. In 2024 the R language was ranked 20th in the world by the Institute of

Electrical and Electronics Engineers (IEEE), and was recently (10/23/2024) ranked 6th by

the PopularitY of Programming Language (PYPL) index1. Further, in a 2017 survey, based

on Stack Overflow queries, Rwas the “least disliked” programming language. The growth

and popularity of R can be partially tied to its relatively straightforward extendability via user

generated functions and packages. This characteristic prompts a strong sense of community

among R-users, along with a practical need for the perpetuation and upkeep of the R system.

While trailing Python, there are currently over 20000 formally contributed R-packages at the

Comprehensive R Archive Network (CRAN).

1.4 A Brief History

R was created in the early 1990s by Australian computational statisticians Ross Ihaka and

Robert Gentleman (Fig 1.1) to address scope2 and memory use deficiencies in its primary

progenitor language, S (Ihaka and Gentleman, 1996). Ihaka and Gentleman used the name R

both to acknowledge the influence of S (because r and s are juxtaposed in the alphabet), and

to celebrate their own personal efforts (because R was the first letter of their first names).

Figure 1.1: Ross Ihaka (1954 - ) (L) and Robert Gentleman (1959 - ) (R), the co-creators of R.

At the insistence of Swiss statistician Martin Maechler (Fig 1.2l), Ihaka and Gentleman dis-

tributed the R source code in 1995 under the Free Software Foundation’s GNU general license

(Ihaka, 1998). Because of its relatively easy-to-learn language, Rwas quickly extended with

1The PYPL index uses the search string 'X tutorial', as an indicator of future language usage
2In computer science, scope refers to the degree of binding between an identifier of an entity (e.g., an object

name) and the entity itself (e.g., an object).

https://www.r-consortium.org/
https://r4stats.com/articles/popularity/
https://github.com/
https://stackoverflow.com/
https://spectrum.ieee.org/top-programming-languages-2022
https://www.ieee.org/
https://pypl.github.io/PYPL.html
https://stackoverflow.blog/2017/10/31/disliked-programming-languages/
https://cran.r-project.org/
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code and packages developed by its users. The rapid growth of R gave rise to the need for a

group to guide its progress. This led, in 1997, to the establishment of the R-development core

team3, an international panel that modifies, troubleshoots, and manages source code (Fig 1.2).

Figure 1.2: A recent version of the R-core development team.

1.4.1 Development of the R Language

The R language is based on older languages, particularly S, developed at Bell Laboratories

(Becker and Chambers, 1978, 1981; Becker et al., 1988), and Lisp4 (McCarthy, 1978) and

Scheme, a dialect of Lisp (Sussman and Steele Jr, 1998; Steele, 1978), which were developed at

3The first R-core consisted of: Douglas Bates, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Ross Ihaka,

Friedrich Leisch, Thomas Lumley, Martin Mächler, Paul Murrell, Heiner Schwarte, and Luke Tierney. Several of

these individuals remain in the current R-core (Fig 1.2).
4Lisp, an abbreviation of “LISt Processor”, is the second-oldest (after Fortran) high-level programming language

still in common use. Lisp can be viewed as a related family of dialects rooted in MaCarthy’s general programming

approach, which included fully parenthesized prefix notation (wherein a function fwith three arguments would

be called using: (f arg1 arg2 arg3)) Reilly (2003). Seminal Lisp dialects include Common Lisp, Scheme, and

AutoLISP (built for the drafting software AutoCAD). Recent Lisp additions include: Hy (a Lisp dialect embedded

in Python), Clojure (a dialect of Lisp for Java), and Lisp Flavored Erlang (LFE). Many important programming

ideas were pioneered by Lisp, including conditional statements based on Boolean decision rules, higher-order

functions (which contain other functions as arguments), recursion (which allows a function to be called by its

own code), and the read–eval–print loop.

https://common-lisp.net/
https://www.scheme.org/
https://en.wikipedia.org/wiki/AutoLISP
https://hylang.org/
https://clojure.org/
https://lfe.io/
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the MIT artificial intelligence laboratory in the late 1970s (Fig 1.3).

Figure 1.3: John McCarthy (1927-2011), creator of the Lisp language, and the first to coin the

term artifical intelligence, working at the MIT AI laboratory.

In the appendix to his book Software for Data Analysis, John M. Chambers (Fig 1.2b), a pri-

mary developer of S, recounts the unique evolution and goals of S from its inception in 1976.

Chambers notes that Swas originally intended to be an analysis toolbox solely for the statistics

research group at Bell Labs, consisting of roughly 20 people at the time. It was decided that S

(initially known as “the system”5) would have fundamental extensibility6, reflecting the Bell

Labs’ philosophy that “collaborations could actually enhance research” (Chambers, 2008)7.

The S language definition, and details concerning the fitting and application of S statistical

models are given in Becker et al. (1988) and Chambers and Hastie (1992), respectively8.

Swas designed to diminish inner functional details of its underlying C and Fortran9 algorithms

while making important higher-level processes more readily accessible and interactive. The

inspiration for these goals was the exploratory data analysis approach of John Tukey (Fig 1.4),

whowas a contemporary of Chambers and other S developers10 at Bell Labs (Chambers, 2020).

5The name S arose because all of the Bell Lab naming suggestions contained “S”, and the name for the recently

designed language C was a single letter (Chambers, 2008).
6In software engineering, extensibility is a design principle that allows for future growth. This allows develop-

ers to easily expand the software capabilities.
7Notably, although Swas originally designed to support statistical analysis, Chambers (2020) asserted that its

actual usage at Bell Labs would be viewed today as data science; defined as “techniques and their application to

derive and communicate scientifically valid inferences and predictions based on relevant data.”
8Becker et al. (1988) described the third version of S, S3. Chambers and Hastie (1992) introduced formula-

notation using the ~ operator, dataframe objects, and modifications to object methods and classes (Wikipedia,

2024i). These publications were often referred to as the blue book and the white book by S-users, due to color of

their covers.
9Fortran (FORmula TRANslator) is a computer language developed by IBM in the 1950s for science and

engineering applications. Remarkably, it remains useful for many applications, including speeding up slow

looping routines in interpreted languages like R. Fortran/R interfacing is formally considered in Ch 9 (Section

9.2)
10Other important contributors to S included Rick Becker, Trevor Hastie, William Cleveland, and Allan Wilks of
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In a 1965 Bell Labs memo (15 years before the release of S) Tukey noted that modern statis-

tician found themselves in a “peaceful collision of computing and data analysis” (Chambers,

1999).

Figure 1.4: JohnTukey (1915-2000), widely known for achievements inmathematical statistics,

including the fast Fourier transform (Cooley and Tukey, 1965), tools in exploratory data

analysis, including the boxplot (Tukey et al., 1977), and computer science, where he coined

the term bit, as a unit of binary infomration and memory (Shannon, 1948).

An adherence of S to exploratory data analysis was evident in the high-quality and flexibility

of its graphics devices and its easily-accessible function documentation (built-in documenta-

tion does not exist for many important languages like C and C++). The initial programmatic

objectives of S are apparent in an early design sketch that describes an outer ‘user interface’

layer to core Fortran algorithms that ultimately produces an S object (Fig 1.5). The underlying

philosophical principles and programmatic foundations of S have strongly affected and guided

the development of R (Chambers, 2020).

S evolved alongside the Unix operating system (also developed at Bell Labs) which currently

underlies Macintosh and Linux (free-Unix) operating systems11. An early inception S was

written for Unix, allowing S to be portable to any machine using Unix. Both S and Unix were

quickly commercially licensed by AT&T for university and third party retailers. The academic

licensing and distribution of S attracted a large number user groups in 1980s. However, the

lack of a clear open source strategy caused many early users to switch from S to R in the 1990s.

Swas purchased by Insightfulr software 2004 to run the commercial software S-Plusr. In

2021 S-Plusr morphed to include TIBCO connected intelligence software, with some R open

source applications.

Bell Labs.
11Unix itself was originally written in assembly language (a low-level programming language with a very strong

correspondence between language instructions and machine/operating system instructions). Unix was later

re-written in C.

https://www.tibco.com/connected-intelligence


6 CHAPTER 1. WELCOME TO R

Figure 1.5: First designs for the S statistical system, circa 1976 (Chambers, 2008)). Written

in the lower lefthand corner is the important note: ’Names are meaningful to algorithm, not

necessarily to language.’
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1.4.1.1 R is Born

The original Scheme-inspired R interpreter consisted of roughly 1000 lines of C12 code, driven

by a command line interface that used a syntax corresponding to S, resulting in “a free imple-

mentation of something ‘close to’ version 3 of the S language (S3)” (Ihaka, 1998). The R and

S languages remain very similar, and code written in S can generally be run unaltered in R.

The method of function implementation in R, however, remains more similar to Scheme. The

official language definition of the current version of R can be found at the CRAN website, along

with other sources of complementary information.

1.4.1.2 Differences of R and S

S3 and the initial release of R differed in two important ways (Ihaka and Gentleman, 1996)13.

First, the R-environment was given a fixed amount of memory at start up. This was in contrast

to S-engines which adjusted available memory to session needs. Among other things, this

difference meant more available pre-reserved computer memory, and fewer virtual pagina-

tion14 problems in R (Ihaka and Gentleman, 1996). It also made R faster than S for many

applications (Hornik and the R Core Team, 2023). Second, R variable locations are lexically

scoped. In computer science, variables are storage areas with identifiers, and scope defines the

context in which a variable name is recognized. So-called global variables are accessible in

every scope (for instance, both inside and outside functions). In contrast, local variablesmay

only exist within particular localized scopes15. Lexical scoping allows functions in R access to

variables that were in effect when the function was defined in a session. The characteristics of

R functions and details concerning lexical scoping are further addressed in Ch 8.

1.4.2 Recent Developments

According to Thieme (2018), a growing component of the R culture includes individuals who

are “Less interested in themechanics ofR than inwhatR allowed them todo.” This group,which

often includes individuals from non-R backgrounds (but with expertise in other languages

including C, Java, CSS andHTML), and those “whomay have little interest in becoming computer

scientists”, has been championed byHadleyWickham (Fig 1.6), creator of the important ggplot2

and dplyr R packages, and author of many useful books on R programming. A larger collection

of packages supported by Wickham is referred to as the tidyverse (Wickham et al., 2019) (see

Ch 5).

12C is a portable, general purpose language, initially developed by Dennis Ritchie (Kernighan and Ritchie,

2002). C, in turn, evolved from the language B, created by Ken Thompson (Thompson, 1972), which, in turn, was

inspired by work on early operating system called Multics (Corbató and Vyssotsky, 1965). C/R interfacing is

formally considered in Ch 9 (Section 9.2).
13For additional demonstrations of the technical differences of R and S see (Hornik and the R Core Team, 2023)
14Virtual pagination is a memory management scheme that allows a computer to store and retrieve data from

secondary storage for use in main memory.
15Formal parameters defined in R functions, including arguments, are (generally) local variables, whereas

variables created outside of functions are global variables (Sections 2.3.3, 8.2).

https://cran.r-project.org/doc/manuals/r-release/R-lang.html#FOOT1
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Figure 1.6: Hadley Wickham (1979 - ) chief scientist at Rstudio.

1.4.3 The Future of R

It is apparent that R can be tied (particularly via linkages with Fortran and Lisp) to early

examples of software engineering, and (via John Tukey and others) to foundational figures in

data science. The future ofRwill be determined by the formal and informal community of users

who have donated years of their lives to its development without monetary compensation.

Importantly, the continued growth of Rwill require adaptation to the changing demography

of R-users. Like most software endeavors, R has been male dominated (Fig 1.2). However, this

has been changing rapidly. As an example, the R Ladies group, founded in 2012 by Gabriela

de Queiroz (Fig 1.7), currently (8/6/2024) has 225 chapters in 65 countries, and more than

39,000 members worldwide.

Figure 1.7: Gabriela de Queiroz, chief data scientist at IBM.

1.5 Copyrights and Licenses

R is intentionally open-source and free. Thus, there are no warranties on its environment or

packages. As its copyright frameworkR uses the GNU (a recursive acronym for GNU is not Unix)

https://rladies.org/
https://www.gnu.org/home.en.html
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General Public License (GPL). This allows users to share and change R and its functions. The

associated legalese can read after typing RShowDoc("COPYING") in the R-console. Because

its functions can be legally (and easily) recycled and altered we should always give credit to

developers, package maintainers, or whomever wrote the R functions or code we are using.

1.6 R and Reliability

The lack of an R warranty has frightened away some scientists. But be assured, with few

exceptions, Rworks as well or better than “top of the line” analytical commercial software.

Indeed, statistical software giants SASr and SPSSr have made R applications accessible from

within their products (Fox, 2009), and R processes and files can be shared directly with

Microsoft Excelr and other proprietary software. For specialized or advanced statistical

techniques R often outperforms other alternatives because of its diverse array of continually

updated applications.

The computing engines and packages that come with a conventional R download (see Section

3.7) meet or exceed U.S. federal analytical standards for clinical trial research (Schwartz et al.,

2008). In addition, core algorithms used in R are based on seminal and well-trusted functions.

For instance,R randomnumber generators include some of themost venerated and thoroughly

tested functions in computer history (Chambers, 2008). Similarly, the Linear Algebra PACKage

(LAPACK) algorithms (Anderson et al., 1999), used by R, are among the world’s most stable

and best-tested software.

1.7 Installation

To install R, first go to the website (http://www.r-project.org/). On this page specify which

platform you are using (Fig 1.8, step 1). R can currently be used on Unix/Linux, Windows and

Mac operating systems. Once an operating system has been selected, one can click on the “base”

link to download the precompiled base binaries if R currently exists on your computer. If R has

not been previously installed on your computer click on “Install R for the first time” (Fig 1.8,

step 2). Youwill delivered to awindow containing a link to download themost recent version of

R by clicking on the “Download” link (Fig 1.8, step 3). Two versions of R are generally released

each year, one in April and one in October. Archived, older versions of R and R packages are

also available from CRAN.

http://www.r-project.org/
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Figure 1.8: Method for installing R for Windows for the first time.

Exercises

1. The following questions concern the history and general characteristics of R.

(a) Who were the creators of R?

(b) What are some major developmental events in the history of R?

(c) What languages is R derived from and/or most similar to?

(d) What features distinguish R from other languages and statistical software?

(e) What are the three operating systems Rworks with?

2. Briefly consider R in the context of major historical events in computer software and

artificial intelligence.



Chapter 2

Some Basics

“Learning to write programs stretches your mind, and helps you think better.”

- Bill Gates, 1955-

2.1 First Steps

Upon opening R in Windows, two things will appear in the console of the R Graphical User

Interface (R-GUI)1. These are the license disclaimer (blue text at the top of the console) and the

command line prompt, i.e., > (Fig 2.1). The prompt indicates that R is ready for a command.

All commands in Rmust begin at >.

The default appearance of the R-GUI will vary slightly among operating systems. In Windows,

the command line prompt and user commands are colored red (Fig 2.1), and output, including

errors and warnings, are colored blue. In Mac OS, the command line prompt will be purple,

user inputs will be blue, and output will be black. In Unix/Linux, wherein Rwill generally run

from a shell command line, absent of anymenus, all threewill be black2. These console defaults

can often be modified/customized when using Rwith an appropriate Integrated Development

Environment (IDE) like RStudio (Section 2.8.3).

We can exit R at any time by typing q() in the console, closing the GUI window (non-Linux

only), or by selecting Exit from the pulldown File menu (non-Linux only).

1Unix/Linux operating systems require R to be launched from the shell command line by typing: R. This will

begin an interactive R session on the system shell command line itself.
2A Unix/Linux GUI, similar to those inWindows andMac OS, can be initiated by openingRwith the commands:

R -g Tk &.

11
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Figure 2.1: An aged, but still recognizableR console: R version 2.15.1, ’RoastedMarshmallows’,

ca. 2012.

2.2 First Operations

As an introduction we can use R to evaluate a simple mathematical expression. Type 2 + 2
and press Enter.

2 + 2

[1] 4

The output term [1] means, “this is the first requested element.” In this case there is just

one requested element, 4, the solution to 2 + 2. If the output elements cannot be held on a

single console line, then Rwould begin the second line of output with the element number

comprising the first element of the new line. For instance, the command rnorm(20) will

take 20 pseudo-random samples (see footnote in Section 9.5.11) from a standard normal

distribution (see Ch 3 in Aho (2014)). We have:

rnorm(20)

[1] -0.655139028 -0.321299117 -0.603446236 -0.192918230 0.008363708
[6] -0.438218357 -0.014049221 -0.864694514 -0.301874922 -1.479418435
[11] -1.099509184 2.405779052 0.567586291 -1.184045493 -0.916286321
[16] -0.652781546 0.893402898 0.740420857 -0.183644845 -0.003615715

The reappearance of the command line prompt indicates that R is ready for another command.
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Multiple commands can be entered on a single line, separated by semicolons. Note, however,

that this is considered poor programming style, as it may make your code more difficult to

understand by a third party.

2 + 2; 3 + 2

[1] 4

[1] 5

R commands are generally insensitive to white spaces, including tabs. This allows the use of

spaces to make code more legible. To my eyes, the command 2 + 2 is simply easier to read

(and potentially debug) than 2+2.

2.2.1 Use Your Scroll Keys

Aswithmany other command line environments, the scroll keys (Fig 2.2) provide an important

shortcut in R. Instead of editing a line of code by tediously mouse-searching for an earlier

command to copy, paste and then modify, you can simply scroll back through your earlier work

using the upper scroll key, i.e., ↑ . Accordingly, scrolling down using ↓will allow you to move

forward through earlier commands.

Figure 2.2: Typical scroll direction keys on a keyboard.

2.2.2 Note to Self: #

Rwill not recognize commands preceded by #. As a result this is a good way for us to leave

messages to ourselves.

# Note at beginning of line
2 + 2

[1] 4

We can even place comments in the middle of an expression, as long the expression is finished

on a new line.
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2 + # Note in middle of line
+ 2

[1] 4

In the “best” code writing style it is recommended that one place a space after # before begin-
ning a comment, and to insert two spaces following code before placing # in the middle of a

line. This convention is followed above.

2.2.3 Unfinished Commands

Rwill be unable to move on to a new task when a command line is unfinished. For example,

type

2 +

and press Enter. We note that the continuation prompt, +, is now where the command prompt

should be. R is telling us the command is unfinished. We can get back to the command

prompt by finishing the function, clickingMisc>Stop current computation orMisc>Stop
all computations from the R-toolbar (non-Linux only), typing Ctrl + C (Linux), or by pressing

the Esc key (all OS).

2.3 Expressions and Assignments

All entries in R are either expressions or assignments. If an entry is an expression, it will

be evaluated, printed, and discarded. Examples include: 2 + 2. Conversely, an assignment

evaluates an expression, andbinds the expressionoutput to aname, thereby creating a referable

R-object. This important activity has prompted the motto: “everything created or loaded in R

is an object”3.

To create an object, we use the assignment operator: <- . The operator represents an arrow

that points toward it’s user-defined name.

Example 2.1.

To create an R-object named y, that contains the result of the expression 2 + 2, I can type:

y <- 2 + 2

The code: y <- 2 + 2 literally means: “2 + 2 is bound to the name y” (Wickham, 2019).

The assignment operator can go on either side of an expression. Thus, as an alternative, I could

have typed:

3Although everything created or loaded in R can be viewed as an object, not all R objects fit neatly into the

object oriented programming (OOP) perspective of “object-oriented.” This is true because R base objects (which

are not object oriented) come from S, which was developed before anyone considered the need for an S OOP

system (see Wickham (2019) and Chambers (2008)).
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2 + 2 -> y

The leftward assignment operator, <-, is generally used instead of the rightward, ->, because
it is easier to conceptualize the relationship object name <- object.

�

Results of an assignment are generally not automatically printed. However, for most common

object classes (see Section 2.3.5) summaries can be easily obtained4.

Example 2.2.

To print the result of Example 2.1 (to see the object bound to the name y), I can simply type:

y

[1] 4

or

print(y)

[1] 4

�

The mathematical equals operator, =, can also be used as an assignment operator. Like <-, =
assigns from right to left.

Example 2.3.

For instance, to obtain the assignment result shown in Example 2.1, I could have typed:

y = 2 + 2
y

[1] 4

�

Notably, the equals sign has limited applicability as an assignment operator, compared to <-5.
Thus, in this document, I use <- for object assignments, and save = for specifying arguments in

R functions.

R objects need not be numeric. In computer programming, a character string or string is a

collective sequence of characters representing text6. Character strings in R are delimited with

quotes: " " or ' '.
4via class print() or summary() functions (see Sections 8.7 and 8.8).
5See ?"<-".
6See Wikipedia (2024j) for additional information.
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Example 2.4.

Here I define y to be a well-known character string.

y <- "Hello, world!"

y

[1] "Hello, world!"

�

2.3.1 Functions and their Arguments

Importantly, the script print(y), in Example 2.2 provides one of our first clear uses of a special

type ofRobject called a function. R functions generally require a user to specifyarguments –that

parameterize and control the function– within parentheses, following the function name. Thus,

we use the following scripting framework to call an R function: function.name(argument1,
argument2, argument3, etc). The function print() only requires one argument: the name

of the object to be printed.

A list of function arguments, and their default values, can (generally) be obtained with the

function formals().

formals(print)

$x

$...

The first argument in print(), x, refers to the name of the object to be printed. The second

argument is the so-called triple dot placeholder, .... This (optional) argument, which is

formally considered in Section 8.3.3, allows additional arguments to be passed from various

printing methods that can be called using the generic function name print() (see Section

8.7).

Arguments in R functions can be set by users in two ways.

1. One can provide acceptable values for arguments, in the order that the arguments occur

in the list reported by formals(). For example, for the function a_function, if I wish to

assign the values x and y to the first and second arguments, respectively, I could type:

a_function(x, y).
2. One can an refer to an argument by its name, and specify values for the argument using

the = operator. That is, for some function a_function, with some arguments foo and
bar, that I wish to assign the values x and y, I could type: a_function(foo = x, bar
= y). This approach should be used if one does not remember the order of arguments
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in a function (if you don’t remember whether foo is the first or fifth argument), or if one

wishes to change/specify only certain arguments from a large number of arguments.

Example 2.5.

Under approach 2, we can print the object y, created in Example 2.4, by typing:

print(x = y)

[1] "Hello, world!"

Of course, data object names other than y can be supplied to the argument x in print(). For
example, to print an object named z, I could use either print(z) or print(x = z).

�

One can maintain the default value for an argument by simply ignoring that argument in the

function call. For example, if a_function, has argument defaults foo = x, bar = y, and I

wished to change the value of foo to baz, while maintaining the default value for bar, I could
type: a_function(foo = baz) Occasionally, a function’s defaults will allow it to run without

user value specifications for any arguments. In this case, I could run a_function by typing:
a_function().

2.3.2 Naming Objects

When binding an R-object to a name, we should try to keep the name simple, and avoid names

that already represent important definitions and functions. These include: TRUE, FALSE,
NULL, NA, NaN, and Inf. In addition, we cannot have names:

• beginning with a numeric value,

• containing spaces, colons, or semicolons,

• containing mathematical operators (e.g., *, +, -, ^, /, =),
• containing important Rmetacharacters (e.g., @, #, ?, !, %, &, |).

However, even these “forbidden” names and characters can be used if one encloses them in

backticks, also called accent grave characters. For example, the code, `?` <- 2 + 2will create

an object named `?`, containing the number 4.

Names should, if possible, be descriptive. Thus, for a object containing 20 randomobservations

from a normal distribution, the name rN20may be superior to the easily-typed, but anonymous

name, x. Finally, we should remember that R is case sensitive. That is, each of the following

24 combinations will be recognized as distinct: name, Name, nAme, naMe, namE, NAme,
nAMe, naME, NaMe, nAmE, NamE, naME, NAMe, nAME, NaME, NAmE, NAME.

2.3.3 Listing Objects

The lexical scoping characteristics of R (Section 1.4.1.2) have important consequences when

considering objects and their names. An object’s name will be assigned to a particular R
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environment –a specialized storage system whose features are formally considered, alongside

R functions, in Ch 8. By default, an object will be assigned by R to the environment where it

was defined, although this can be modified.

Only objects in the current environment can be directly accessed by calling their names7. A list

of objects assigned to particular environments can be obtained using the functions objects()
or ls().

Example 2.6.

The R session itself is defined to be the so-called global environment: .GlobalEnv.

environment()

<environment: R_GlobalEnv>

Object searches from objects() and ls() are limited, by default, to the current environment

–which, for this document, is the global environment. Currently, I only have the object y (which

has been applied and modified several times) in GlobalEnv.

objects()

[1] "y"

Note that in this example I run environment() and objects()without arguments.

�

2.3.4 Combining Data

To combine a collection of numbers or other data into a single entity, one can use the important

R function c(), which means “combine”.

Example 2.7.

To define the numbers 23, 34, and 10 collectively to be an object named x, I would type:

x <- c(23, 34, 10)

We could then do something like:

x + 7

[1] 30 41 17

Note that seven was added to each element in x.

�
7Names defined within R functions are specific (local) to those functions, just as function names from R

packages (Section 3.7) are local to their respective package environments (see Ch 8).
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2.3.5 Object Classes

Under the idiom of object oriented programming (OOP), an object may have attributes that

allow it to be evaluated correctly, and associated methods appropriate for those attributes

(e.g., specific functions for plotting, printing, etc.)8.

R objects will generally have a class, identifiable with the function class().

class(x)

[1] "numeric"

Objects in class numeric (and those in several other widely-used classes) can be evaluated

mathematically. Some common R classes are shown in Table 2.1, along with several new

functions used to create objects with those classes, including: raw(), expression(), list(),
factor(), function(), matrix(), array(), and data.frame(). We will learn about these

functions, and create objects representing all of these classes over the next few chapters. We

will also learn how to create our own personalized classes and associated methods (Section

8.7).

Table 2.1: CommonR classes for some object x. The listed class would be printed if one created

the assignment for x shown in the Example, and typed class(x).

Class Example

logical x <- TRUE
numeric x <- 2 + 2
integer x <- 1:3
character x <- c("a","b","c")
complex x <- 5i
raw x <- raw(2)
expression x <- expression(x * 4)
list x <- list()
factor x <- factor("a","a","b")
function x <- function(y)y + 1
matrix x <- matrix(nrow = 2, rnorm(4))
array x <- array(rnorm(8), c(2, 2, 2))
data.frame x <- data.frame(v1 = c(1,2), v2 = c("a","b"))

2.3.6 Object Base Types

All R objects will have so-called base types that define their underlying C language data struc-

tures. Specifically, R base types correspond to an underlying C-codified typedef, an alias

framework for C data types. This internal process is referred to by the R-core development

8There are many OOP languages including R, C#, C++, Objective-C, Smalltalk, Java, Perl, Python and PHP. C is

not considered an OOP language.
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team as SEXPTYPE, meaning S-expression (SEXP) type (R Core Team, 2024a). There are cur-

rently 24 SEXPTYPE variants (R Core Team, 2024a), each corresponding to one of the 24 R base

types (Table 2.2), and it is unlikely that more will be developed in the near future (Wickham,

2019). Themeaning and usage of some of the base typesmay seem clear, for instance, integer
and character, which are also class designations (Table 2.1). Most of the base types are

specifically addressed in later chapters, including list, complex, logical, integer, NULL,
and symbol (Chs 3), character and language (Chs 4 and 5), closure, special, builtin,
environment, pairlist, S4, and promise (Ch 8) and raw and double (Ch 12). Base types

meant for C-internal processes, i.e., any, bytecode, promise, ..., weakref, externalptr, and
char, are not easily accessible with interpreted R code (R Core Team, 2024b). Underlying

SEXP types are considered only infrequently through the remainder of the book.
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Table 2.2: R base types, examples, and corresponding SEXP types. The listed base type would be printed if one created the

assignment for x shown in the Example and typed typeof(x). The function mle, used to create the Example for base type S4,
requires the package stats4.

Base type Example Application SEXP

NULL x <- NULL vectors NILSXP
logical x <- TRUE vectors LGLSXP
integer x <- 1L vectors INTSXP
complex x <- 1i vectors CPLXSXP
double x <- 1 vectors REALSXP
list x <- list() vectors VECSXP
character x <- "a" vectors STRXSP
raw x <- raw(2) vectors RAWSXP
closure x <- function(y)y + 1 closure functions CLOSXP
special x <- `[` special functions SPECIALSXP
builtin x <- sum builtin functions BUILTINSXP
expression x <- expression(x * 4) expressions EXPRSXP
environment x <- globalenv() environments ENVSXP
symbol x <- quote(a) language components SYMSXP
language x <- quote(a + 1) language components LANGSXP
pairlist x <- formals(mean) language components LISTSXP
S4 x <- stats4::mle(function(x=1)x∧2) non-simple objects OBJSXP
any No example C-internal ANYSXP
bytecode No example C-internal BCODESXP
promise No example C-internal PROMSXP
... No example C-internal DOTSXP
weakref No example C-internal WEAKREFSXP
externalptr No example C-internal EXTPTRSXP
char No example C-internal CHARSXP
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Base types of numeric objects define their storage mode, i.e., the way R caches them in its

primary memory9. Base types can be identified using the function typeof().

Example 2.8.

For example, for our latest version x from Example 2.7 we have:

typeof(x)

[1] "double"

We see that x has storage mode double, meaning that its numeric values are stored using

up to 53 bits, resulting in recognizable and distinguishable values between approximately

5 × 10−323 and 2 × 10307 (see Ch 12 for more information).

The R session itself (the global environment) has base type environment:

typeof(.GlobalEnv)

[1] "environment"

�

2.3.7 Object Attributes

Many R-objects will also have attributes (i.e., characteristics particular to the object or object

class).

Example 2.9.

Typing:

attributes(x)

NULL

indicates that x (as defined in Example 2.7) does not have additional attributes. However,

using coercion (Section 3.3.4) we can define x to be an object of class matrix (a collection of

data in a row and column format (see Section 3.1.2)).

attributes(as.matrix(x))

$dim
[1] 3 1

9The functions mode() and storage.mode() are generally not appropriate for identifying R base types and

storage modes (Wickham, 2019). In particular, the function mode() gives the mode of an object with respect

to the S3 system (see Becker et al. (1988)), whereas storage.mode() is generally used when interfacing with

algorithms written in other languages, primarily C or Fortran, to check that R objects have the correct type for

the interfaced language.
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Now x has the attribute dim (i.e., dimension). Specifically, x is a three-celled matrix. It has

three rows and one column.

�

Amazingly, underlying object characteristics allow R to simultaneously store and distinguish

objects with the same name. For instance:

mean <- mean(c(1, 2, 3))
mean

[1] 2

mean(c(1, 2, 3))

[1] 2

In general, it is not advisable to name an object after a frequently used function. Nonetheless,

the function mean(), which calculates the arithmetic mean of a collection of data, is distinguish-

able from the new user-created object mean, because these objects have different underlying
characteristics. We can remove the user-created object mean, with the function rm(). This
leaves behind only the function mean(), which I print below:

rm(mean)
mean

function (x, ...)
UseMethod("mean")
<bytecode: 0x0000012d8c1153f8>
<environment: namespace:base>

The capacity of R to track and distinguish object names is a primary focus of Section 8.8.

2.4 Getting Help

There is no single perfect source for information/documentation for all aspects of R. Detailed

manuals from CRAN are available concerning the R language definition, basic operations, and

package development. These resources, however, often assume a familiarity with Unix/Linux

operating systems and computer science terminology. Thus, they may not be particularly

helpful to biologists who are new to R.

2.4.1 help() and ?

A comprehensive help system is available for many R components including operators, and

loaded package dataframes and functions. The system can be accessed via the question mark,

?, operator and the function help().

https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
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Example 2.10.

For instance, if I wanted to knowmore about the plot() function, I could type:

?plot

or

help(plot)

�

Documentation for packagedR functions (Section3.7)must include an annotateddescription of

function arguments, along with other pertinent information, and documentation for packaged

datasets must include descriptions of dataset variables10. The quality of documentation

will generally be excellent for functions from packages in the default R download (i.e., the

R-distribution packages, see Section 3.7), but will vary from package to package otherwise.

For help and documentation concerning programming metacharacters used in R (for instance

@, #, ?, !, %, &, |), one would enclose the metacharacters with quotes. For example, to find out

more information about the logical operator & I could type help("&") or ? "&". Placing two

question marks in front of a topic will cause R to search for help files concerning with respect

to all packages in a workstation.

Example 2.11.

For instance, type:

??lm

or, alternatively

help.search(lm)

for a huge number of help files on linear model functions identified through fuzzy matching.

�

Help for particular R-questions can often be found online using the search engine at http:

//search.r-project.org/. This link is provided in the Help pulldown menu in the R console

(non-Linux only). Helpful online discussions can also be found at Stack Overflow, and Stats

Exchange.

2.4.2 demo() and example()

The function demo() allows one access to coded examples that developers have worked out

for a particular function or topic. For instance, type:

10Chapter 10 provides instructions on how to develop documentation files for your own packages.

http://search.r-project.org/
http://search.r-project.org/
https://stackoverflow.com/questions/tagged/r
https://stats.stackexchange.com/
https://stats.stackexchange.com/
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demo(graphics)

for a brief demonstration of R graphics. Typing

demo(persp)

will provide a demonstration of 3D perspective plots. And, typing:

demo(Hershey)

will provide a demonstration of available modifiable symbols from the Hershey family of fonts

(see Ch 6 in Hershey (1967)). Finally, typing:

demo()

lists all of the demos available in the loaded libraries for a particular workstation. The function

example() usually provides less involved demonstrations from the man package directories
(short for user manual, see Ch 10) in an R package. For instance, type:

example(plotmath)

for a coded demonstration of mathematical graphics.

2.4.3 Vignettes

R packages often contain vignettes. These are short documents that generally describe the the-

ory underlying algorithms and guidance on how to correctly use package functions. Vignettes

can be accessed with the function vignette(). To view all vignettes for all installed packages

(Section 3.7.1), type:

vignette(all = TRUE)

To view all vignettes available for loaded packages (see Section 3.7.2), type:

vignette(all = FALSE)

To view vignettes for the R contributed package asbio (following its installation), type:

vignette(package = "asbio")

To see the vignette simpson in package asbio, type:

vignette("simpson", package = "asbio")

The function browseVignettes() provides an HTML-browser that allows interactive vignette

searches.
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2.5 Keyboard Shortcuts

R contains a number of useful keyboard shortcuts. For example, At this point, it may be

evident that the R-console can quickly become cluttered and confusing. To remove console

text (without actually getting rid of any of the objects created in a session) press Ctrl + L or,

from the Edit pulldown menu, click Clear console (non-Linux only). A full list of keyboard

shortcuts can be obtained by typing: Alt + Shift + K (Windows and Linux) or Option + Shift + K

(Mac OS). Keyboard shortcuts can often be modified, or even created, if one is running R from

a sophisticated IDE like RStudio (Section 2.10).

2.6 Options

To enhance an R session, we can adjust the appearance of the R-console and customize options

that affect expression output. These include the characteristics of the graphics devices, the

width of print output in the R-console, and the number of print lines and print digits. Changes

to some of these parameters can be made by going to Edit>GUI Preferences in the R-toolbar.

Many other parameters can be changed using the options() function. To see all alterable

options one can type:

options()

The resulting list is extensive. To modify options, one would simply define the desired change

within parentheses following a call to options. For instance, to see the default number of

digits, I would type:

options("digits")

$digits
[1] 7

To change the default number of digits in output from 7 to 5 in the current session, I would

type:

options(digits = 5)
# demonstration using pi
pi

[1] 3.1416

One can revert back to default options by restarting an R session.

2.6.1 Advanced Options

To store user-defined options and start up procedures, an.Rprofile file will exist in your

R program etc directory. This location would be something like: …R/R-version/etc. R

will silently run commands in the .Rprofile file upon opening. Thus, by customizing the
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.Rprofile file one can “permanently” set session options, load installed packages, define your

favorite package repository (Section 3.7), and even create aliases and defaults for frequently

used functions.

The.Rprofile file located in theetcdirectory is the so-called.Rprofile.site file. Additional
.Rprofile files can be placed in the working directory (see below). Rwill check for these and

run them after running the .Rprofile.site file.

Example 2.12.

Here is the content of one of my current .Rprofile files.

1 options(repos = structure(c("http://ftp.osuosl.org/pub/cran/")))
2 .First <- function(){
3 library(asbio)
4 cat("\nWelcome to R Ken! ", date(), "\n")
5 }
6 .Last <- function(){
7 cat("\nGoodbye Ken", date(), "\n")
8 }

The commandoptions(repos = structure(c("http://ftp.osuosl.org/pub/cran/")))
(Line 1) defines my preferred CRAN repository mirror site (see Section 3.7). The function

.First( ) (Lines 2-5) will be run at the start of the R session and .Last( ) (Lines 6-8)

will be run at the end of the session. R functions will formally introduced in Ch 8. As we go

through this book it will become clear that these lines of code force R to say hello, and to load

the package asbio (R packages are formally considered in Section 3.7), and print the date/time

(using the function date()) when it opens, and to say goodbye, and print the date/time when

it closes (although the farewell will only be seen when running R from a shell interface, e.g.,

the Windows Command Prompt).

�

One can create .Rprofile files, and many other types of R extension files using the function

file.create(). For instance, the code:

file.create("defaults.Rprofile")

will place an empty, editable,.Rprofile file called defaults in the working directory.

2.7 TheWorking Directory

By default, the R working directory is set to be the home directory of the workstation. The

command getwd() shows the current file path for the working directory.

Theworking directory can be changedwith the command setwd(filepath), where filepath
is the location of the desired directory, or by using pulldown menus, i.e., File>Change dir
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(non-Linux only). Because R developed under Unix, we must specify directory hierarchies

using forward slashes or by doubling backslashes.

Example 2.13.

Here is the actual working directory of this (GitHub-linked) manuscript.

getwd()

[1] "C:/Users/ahoken/Documents/GitHub/Amalgam"

To establish a working directory file path to the Windows directory: C:\Users\User\Docu-

ments, I would type:

setwd("C:/Users/User/Documents")

or

setwd("C:\\Users\\User\\Documents")

�

2.8 Saving and Loading YourWork

As noted in Ch 1, an R session is allocated with a fixed amount of memory that is managed

in an on-the-fly manner. An unfortunate consequence of this is that if R crashes, all unsaved

information from the work session will be lost. Thus, session work should be saved often.

Note that Rwill not give a warning if you are writing over session files from the R console. The

old file will simply be replaced. Three general approaches for saving non-graphics data are

possible. These are: 1) saving the history, 2) saving objects, and 3) saving R script. All three of

these operations can be greatly facilitated by using an R integrated development environment

like RStudio (Section 2.10).

2.8.1 R History

To view the history (i.e., the commands that have been used in a session) one can use

history(n) where n is the number of previous command lines one wishes to see11. For

instance, to see the last three commands, one would type12:

11Importantly, the functions savehistory(), loadhistory(), and history() are not currently supported

for Mac OS. There are ways around this. For instance, in RStudio (Section 2.10), the Mac OS command history

can be obtained by clicking theHistory icon that appears on the tool bar at the top of the console window. As

an additional issue, Windows and Unix-alike platforms have different implementations for savehistory() and
loadhistory(). See help pages for these functions within your platform for particulars.

12This command will not work in an embedded Windows R GUI, like the one in RStudio.
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history(3)

To save the session history in Windows one can use File>Save History or the function

savehistory(). For instance, to save the session history to the working directory under

the name history1, I could type:

savehistory(file = "history1.Rhistory")

We can view the code in this file from any text editor. To load the history from a previous

session one can use File>Load History (non-Linux only) or the function loadhistory(). For
instance, to load history1 I would type:

loadhistory(file = "history1.Rhistory")

To save the history at the end of (almost) every interactive Windows or Unix-alike R session,

one can alter the .Rprofile file .Last function to include:

.Last <- function() if(interactive()) try(savehistory("~/.Rhistory"))

2.8.2 R Objects

To save all of the objects available in the current R-session one can use File>SaveWorkspace

(non-Linux only), or simply type:

save.image()

This procedure saves session objects to the working directory as a nameless file using an

.RData extension. The file will be opened, silently, with the inception of the next R- session,

and cause objects used or created in the previous session to be available. Indeed, R will

automatically execute all .RData files in the working directory for use in a session. Stored

.RData files can also be loaded using File>Load Workspace (non-Linux only). One can

also save .RData objects to a specific directory location and use a specific file name using:

File>Save Workspace, or with the flexible function save(). R data file formats, including

.rda, and .RData, (extensions for R data files), and .R (the format for R scripts), can be read into

R using the function load(). Users new to a command line environment will be reassured by

typing:

load(file.choose())

The function file.choose() will allow one to browse interactively for files to load using

dialog boxes. Detailed procedures for importing (reading) and exporting (saving) data with a

row and column format, and an explicit delimiter (e.g. .csv files) are described in Ch 3.
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2.8.3 R Scripts

To save anR script as an source code file, it is best to use an IntegratedDevelopment Environment

(IDE) compatiblewithR.R contains its own IDE, theR-editor, which is useful forwriting, editing,

and saving scripts as .r extension files (Fig 2.3). To access the R-editor go to File>New script

(non-Linux only) or type the shortcut Ctrl + F + N (Windows or Linux) or Cmd + F + N (Mac

OS) . Code written in the R-editor IDE can be sent directly to the R-console by copying and

pasting or by selecting code and using the shortcut Ctrl + R (Windows and Linux) or Cmd + R

(Mac OS).

Figure 2.3: The R-editor providing code for a famous computational exercise.

Aside from the R-editor, a number of other IDEs outside of R allow straightforward generation

of R script files, and a direct link between text editors, that provide syntax highlighting for

R code, and the R-console itself. These include RWinEdt (an R package plugin for WinEdt ),

Tinn-R, a recursive acronym for Tinn is not Notepad, ESS (Emacs Speaks Statistics), Jupyter

Notebook, a web-based IDE originally designed for Python, but useful for many languages, and

particularly RStudio, which will be introduced later in this chapter13.

SavedR scripts canbe called andexecutedusing the functionsource(). To browse interactively

for source code files, one can type:

source(file.choose())

or go to File>Source R code.

2.9 Basic Mathematics

A large number of mathematical operators and functions are available with a conventional

download of R.

Elementary mathematical operators, commonmathematical constants, trigonometric func-

tions, derivative functions, integration approaches, and basic statistical functions are shown in

shown in Tables 2.3 - 2.9.

13Other text editors with at least some IDE support for R include, but are not limited to, NppToR in Notepad++,

Bluefish, Crimson Editor, ConTEXT, Eclipse, Vim, Geany, jEdit, Kate, TextMat, gedit, and SciTE.

https://www.winedt.com/
http://www.sciviews.org/Tinn-R
http://ess.r-project.org
https://jupyter.org/
https://jupyter.org/
http://rstudio.org
http://sourceforge.net/projects/npptor
http://bluefish.openoffice.nl/index.htm
http://www.crimsoneditor.com/
http://www.contexteditor.org/
http://www.eclipse.org/eclipse/
http://www.vim.org/
http://www.geany.org/
http://www.jedit.org/
http://kate-editor.org/
http://macromates.com/
http://projects.gnome.org/gedit/
http://www.scintilla.org/SciTE.html
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2.9.1 Elementary Operations

Elementary mathematical operations and functions (Table 2.3), and even those for specialized

processes, can generally be applied to awide variety of numeric object classes. For instance, the

expression log(x) could be applied if xwas a scalar (e.g., x = 3), or a collection of numbers,

e.g., x = c(3, 7, 8). In the latter case, the natural logarithm would be be calculated for each

element in x, and those transformed outcomes would be returned by the function. Notably,

this form of intuitive scripting is a dramatic departure from approaches used by many other

computer languages14.

14For instance, sums in C and Fortran are generally obtained using loops (Section 8.5). We should not forget,

however, that functions like sum() (and even `+`) are underlain by C executables (see Section 8.1).
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Table 2.3: Elementary mathematical operators and functions in R. For all functions x represents a scalar or a numeric vector.

Operation Function/Operator To find: We type:

addition + 2 + 2 2 + 2
subtraction - 2 − 2 2 - 2
multiplication * 2 × 2 2 * 2
division / 2

3 2/3
modulo %% remainder of 5

2 5%%2
integer division %/% 5

2 without remainder 5%/%2
exponentiation ∧ 23 2∧3
∣ 𝑥 ∣ abs(x) ∣ −23.7 ∣ abs(-23.7)
round 𝑥 to 𝑑 digits round(x, digits = d) round−23.71 to 1 digit round(-23.71, 1)
round 𝑥 up to closest whole num. ceiling(x) ceiling(2.3) ceiling(2.3)
round 𝑥 down to closest whole num. floor(x) floor(2.3) floor(2.3)√
𝑥 sqrt(x)

√
2 sqrt(2)

log𝑒 𝑥 log(x) log𝑒 5 log(5)
log𝑏 𝑥 log(x, base = b) log10 5 log(5, base = 10)
𝑥! factorial(x) 5! factorial(5)
(𝑛𝑥) =

𝑛!
𝑥!(𝑛−𝑥)! choose(n,x) (52) choose(5,2)

Γ(𝑥) gamma(x) Γ(3.2) gamma(3.2)
𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏) beta(a,b) 𝐵(3, 2) beta(3,2)
∑𝑛

𝑖=1 𝑥𝑖 sum(x) sum of x sum(x)
cumulative sum cumsum(x) cum. sum of x cumsum(x)
∏𝑛

𝑖=1 𝑥𝑖 prod(x) product of x prod(x)
cumulative product cumprod(x) cum. prod. of x cumprod(x)
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2.9.2 Associativity and Precedence

Note that the operation:

2 + 6 * 5

[1] 32

is equivalent to 2+(6⋅5) = 32. This is because the * operator gets higher priority (precedence)
than +. Evaluation precedence can be modified with parentheses:

(2 + 6) * 5

[1] 40

In the absence of operator precedence, mathematical operations in R are (generally) read from

left to right (that is, their associativity is from left to right) (Table 2.4). This corresponds to the

conventional order of operations in mathematics. For instance:

2 + 2^(2 + 1)

[1] 10

Table 2.4: Precedence and associativity of mathematical operators. Operators are listed from

highest to lowest precendece in operations.

Precedent Operator Description Associativity

1 ∧ exponent right to left

2 %% modulo left to right

3 * / multiplication, division left to right

4 + - addition, subtraction left to right

Example 2.14.

Here are some other simple mathematical examples. To solve 1/
√
22!, I could type:

1/sqrt(factorial(22))

[1] 2.9827e-11

And to solve Γ( 3
√
23𝜋), I could type:

gamma((23 * pi)^(1/3))

[1] 7.411

By default the function log() computes natural logarithms, i.e.,
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log(exp(1))

[1] 1

The log() function can also compute logarithms to a particular base by specifying the base in

an optional second argument called base. For instance, to solve the operation: log10 3+ log3 5,
one could type:

log(3) + log(5)

[1] 2.7081

or

log(x = 3, base = 10) + log(x = 5, base = 3)

[1] 1.9421

�

2.9.3 Constants

R allows easy access to most conventional constants (Table 2.5).

Table 2.5: Conventional constants in R.

Operation Operator/Function To find: We type:

−∞ -Inf −∞ -Inf
∞ Inf ∞ Inf
𝜋 = 3.141593… pi 𝜋 pi
𝑒 = 2.718282… exp(1) 𝑒 exp(1)
𝑒𝑥 exp(x) 𝑒3 exp(3)

2.9.4 Trigonometry

R assumes that the inputs for trigonometric functions are in radians. Of course degrees can

be obtained from radians using 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 × 180/𝜋, or conversely 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 =
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 × 𝜋/180 (Table 2.6). Note that there are no base-R functions for cotangent, secant

or cosecant. However, for some angle 𝑥, measured in radians, these are readily obtained as:

cot(𝑥) = cos(𝑥)/𝑠𝑖𝑛(𝑥), sec(𝑥) = 1/ cos(𝑥), and csc(𝑥) = 1/ sin(𝑥).

2.9.5 Derivatives

The function D() finds symbolic and numerical derivatives of simple expressions. It requires

two arguments, 1) a mathematical function specified as an object of class expression, and 2)

the variable name in the differential (the denominator in the difference quotient).
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Table 2.6: Trigonometric functions in R. For all functions x represents a scalar or a numeric

vector.

Operation Operator/Function To find: We type:

cos(𝑥) cos(x) cos(3 rad.) cos(3)
sin(𝑥) sin(x) sin(45∘) sin(45 * pi/180)
tan(𝑥) tan(x) tan(3 rad.) tan(3)
acos(𝑥) acos(x) acos(45∘) acos(45 * pi/180)
asin(𝑥) asin(x) asin(3 rad.) asin(3)
atan(𝑥) atan(x) atan(45∘) atan(45 * pi/180)
cosh(𝑥) cosh(x) cosh(3 rad.) cosh(3)
sinh(𝑥) sinh(x) sinh(45∘) sinh(45 * pi/180)
tanh(𝑥) tanh(x) tanh(3 rad.) tanh(3)
cot(𝑥) cot(3 rad.) cos(3)/sin(3)
sec(𝑥) sec(3 rad.) 1/cos(3)
csc(𝑥) csc(3 rad.) 1/sin(3)

Objects of class expression, can be created using the function expression(), and evaluated

with the function eval()).

Example 2.15.

Here is an example of how the functions expression() and eval() can be used:

eval(expression(2 + 2))

[1] 4

Of course we wouldn’t bother to use expression() and eval() in such simple applications.

�

Table 2.7 contains specific examples using D().

Table 2.7: Evaluation of derivatives in R using D().
To find: We type:

𝑑
𝑑𝑥5𝑥 D(expression(5 * x), "x")
𝑑2

𝑑𝑥25𝑥2 D(D(expression(5 * x∧2), "x"), "x")
𝜕
𝜕𝑥5𝑥𝑦 + 𝑦 D(expression(5 * x * y + y), "x")

Example 2.16.

Thus, to solve:
𝑑
𝑑𝑥

20𝑥−4

I could use:
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e <- expression(20 * x^(-4))
D(e, "x")

20 * (x^((-4) - 1) * (-4))

Unfortunately, it is left to us to simplify the ugly output. That is,

𝑑
𝑑𝑥

(20𝑥−4) =

= 20 × (𝑥(−4)−1) × (−4))
= −80𝑥−5

= −80
𝑥5

�

Several other R functions provide tidier derivative results compared to D(), although they

require the installation and loading of additional packages, not included in a conventional

download of R. See Section 3.7 for a thorough introduction to R packages. For instance, the

function Deriv(), from the package Deriv can be applied using two approaches15.

• Under the first approach, a differentiable function is defined as an R function (see Ch
8) whose one argument is the variable name in the differential. This function is then

used as the single required argument in Deriv().
• With the second approach, a differentiable function is defined as a character string. This

is then used as the first argument in Deriv(). The variable name in the differential is

defined in a second argument.

Example 2.17.

To obtain the derivative in Example 2.16 using Deriv()wewould first install theDeriv package

(for instance using: install.packages("Deriv")) and load the package using:

library(Deriv) # loads Deriv

Under the first approach we could then type:

d <- Deriv(function(x) 20 * x^(-4))
d

function (x)
-(80/x^5)

Note that the output, d, is a function, allowing one to obtain instantaneous slopes for specified

x values.

15The documentation for Deriv() actually lists six approaches (see ?Deriv).
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d(c(-1, 2, 3, 5.2))

[1] 80.000000 -2.500000 -0.329218 -0.021041

Under the second approach, we could specify

Deriv("20 * x^(-4)", "x")

[1] "-(80/x^5)"

Note that the output is a character string.

Both approaches allow one to obtain higher order derivatives and partial derivatives. For

instance,

Deriv(d) # second derivative

function (x)
400/x^6

Deriv(Deriv("20 * x^(-4)", "x")) # second derivative

[1] "400/x^6"

D() results can also be simplified directly with function Simplify() from the package Deriv.

For the current Example, one could use:

e <- expression(20 * x^(-4))
Simplify(D(e, "x"))

-(80/x^5)

�

2.9.6 Integration

The function integrate solves definite integrals. It requires three arguments. The first is an

R function defining the integrand. The second and third are the lower and upper bounds of

integration.

Example 2.18.

To solve:

∫
4

2
3𝑥2𝑑𝑥

we could type:
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f <- function(x){3 * x^2}
integrate(f, 2, 4)

56 with absolute error < 6.2e-13

�

R functions are explicitly addressed in Ch 8.

2.9.7 Statistics

R, of course, contains a huge number of statistical functions. These will generally require

sample data for summarization. Data can be brought into R from spreadsheet files or other

data storage files (we will learn how to do this shortly). As we have learned, data can also be

assembled in R. For instance,

x <- c(1, 2, 3)

Statistical estimators can be separated into point estimators, which estimate an underlying

parameter that has a single true value (from a Frequentist viewpoint), and intervallic estima-

tors, which estimate the bounds of an interval that is expected, preceding sampling, to contain

a parameter at some probability (Aho, 2014). Point estimators can be further classified as

estimators of location, scale, shape, and order statistics (Table 2.8). Measures of location

estimate the typical or central value from a sample. Examples include the arithmetic mean

and the sample median. Measures of scale quantify data variability or dispersion. Examples

include the sample standard deviation and the sample interquartile range (IQR). Shape esti-

mators describe the shape (i.e., symmetry and peakedness) of a data distribution. Examples

include the sample skewness and sample kurtosis. Finally, the 𝑘th order statistic of a sample is

equal to its 𝑘th-smallest value. Examples include the data minimum, the data maximum, and

other quantiles (including the median). Intervallic estimators include confidence intervals

(Table 2.9). A huge number of other statistical estimating, modelling, and hypothesis testing

algorithms are also available for the R environment. For guidance, see Venables and Ripley

(2002), Aho (2014), and Fox and Weisberg (2019), among others.
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Table 2.8: Simple point estimators in R. The term x represents a numeric data vector, and y represents a numeric data vector

whose elements are paired with those in x. The cipher asbio:: indicates that the function is located in the package asbio See

Section 3.7.

Acronym Function Description Estimator type

̄𝑥 mean(x) arithmetic mean of 𝑥 location

mean(x, trim = t) trimmed mean of 𝑥 for 0 ≤ 𝑡 ≤ 1. location

𝐺𝑀 asbio::G.mean(x) geometric mean of 𝑥 location

𝐻𝑀 asbio::H.mean(x) harmonic mean of 𝑥 location

𝑥 median(x) median of 𝑥 location order statistic

𝑚𝑜𝑑𝑒(𝑥) asbio::Mode(x) mode of 𝑥 location

𝑠 sd(x) standard deviation of 𝑥 scale

𝑠2 var(x) variance of 𝑥 scale

𝑐𝑜𝑣(𝑥, 𝑦) cov(x, y) covariance of 𝑥 and 𝑦 scale

𝑟𝑥,𝑦 cor(x, y) Pearson correlation of 𝑥 and 𝑦 scale

𝐼𝑄𝑅 IQR(x) interquartile range of 𝑥 scale order statistic

𝑀𝐴𝐷 mad(x) median absolute deviation of 𝑥 scale

𝑔1 asbio::skew(x) skew of 𝑥 shape

𝑔2 asbio::kurt(x) kurtosis of 𝑥 shape

𝑚𝑖𝑛(𝑥) min(x) min of 𝑥 order statistic

𝑚𝑎𝑥(𝑥) max(x) max of 𝑥 order statistic

𝐹−1(𝑝) quantile(x, prob = p) quantile of 𝑥 at lower-tailed probability 𝑝 order statistic
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Table 2.9: Some intervallic estimators in R. The term x represents a numeric vector. The cipher

asbio:: indicates that the function is located in the package asbio

Function Description

asbio::ci.mu.z(x, conf, sigma) Conf. int. for 𝜇 at level conf. True SD = sigma.
asbio::ci.mu.t(x, conf) Conf. int. for 𝜇 at level conf. 𝜎 unknown.

asbio::ci.median(x, conf) Conf. int. for true median at level conf.

2.10 RStudio

RStudio is an open source IDE for R (Fig 2.4). RStudio greatly facilitates writing R code, saving

and examining R objects and history, and many other processes. These include, but are not

limited to, documenting session workflows (Section 2.10.2), writing R package documentation

(Section 10.5), calling and receiving code from other languages (Section 9.1.3), and even

developing web-based graphical user interfaces (Section 11.5). RStudio can currently be

downloaded at (https://posit.co/products/open-source/rstudio/). Like R itself, RStudio can

be used with Windows, Mac, and Unix/Linux operating systems. Unlike R, RStudio has both

freeware and commercial versions16. We will use the former here.

Figure 2.4: The RStudio logo.

RStudio is generally implemented using a four pane workspace (Fig 2.5). These panes will

contain: 1) the code editor, 2) the R-console, 3) the environment and histories panel, and 4)

the plots and other miscellany panel. Tabs in panels may vary to a small degree depending on

the underlying character of the source code being edited, and whether an RStudio project is

open (Section 2.10.1).

16On 7/27/2022 RStudio announced it was shifting to a new name, Posit, to acknowledge its growth beyond

a simple IDE for R. The RStudio name will be retained for RStudio Desktop, and the RStudio Server, but it will

be changed for other applications including the RStudio Workbench (now Posit Workbench) and the RStudio

Package Manager (now Posit Package Manager).

https://posit.co/products/open-source/rstudio/
https://posit.co/products/open-source/rstudio//index
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Figure 2.5: Interfaces for RStudio 2023.06.2 Build 561.

• The RStudio Code Editor panel (Fig 2.5, Panel 1) allows one to create R scripts and even

scripts for other languages that can be called to and from R (Ch 9). The code panel can

also be used to create and edit session documentation files (see Section 2.10.2 below)

and other important R file types. A new R script can be created for editing within the

code editor by going to File>New>R Script. Commands from an R script can be sent

to the R console using the shortcut Ctrl + Enter (Windows and Linux) or Cmd + Enter

(Mac).

• The R-console panel (Fig 2.5, Panel 2) by default, is identical in functionality to the R

console of the most recent version of R on your workstation (assuming that all of the

paths and environments are set up correctly on your computer). Thus, the console panel

can be used directly for typing and executing R code, or for receiving commands from

the code editor (Panel 1).
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• The Environments and History panel (Fig 2.5, Panel 3) can be used to: 1) show a list of

R objects available in your R session (the Environment tab), or 2) show, search, and

select from the history of all previous commands (History tab). This panel also provides

an interface for point and click import of data files including .csv, .xls, and many other

file formats (Import Dataset pulldown within the Environment tab).

• The Plots and Miscellany panel (Fig 2.5, Panel 4) can be used to show: 1) files in

the working directory, 2) a scrollable history of plots and image files, and 3) a list of

available packages (via the Packages tab), with facilities for updating and installing

packages. If a package is in the GUI list, then the package is currently loaded. Packages

and their installation, updating, and loading are formally introduced in Section 3.7. The

panel’s Files pulldown tab allows straightforward establishment of working directories

(although this can still be done at the command line using setwd()) (Fig 2.7). The panel’s
Help tap opens automatically when uses ? or help for particular R topics (Section 2.4).

CAUTION!

Be very careful when managing files in the Plots and Miscellany panel, as you can

permanently delete files without (currently) the possibility of recovery from a Recycling

Bin.

2.10.1 RStudio Project

An RStudio project can be be created via the File pulldown menu (Fig 2.7). A project allows

all related files (data, figures, summaries, etc.) to be easily organized together by setting the

working directory to be the location of the project .Rproj file.

2.10.2 Workflow Documentation

We can document workflow and simultaneously run/test R session code by either:

1. Creating an RMarkdown17 .rmd file that can be compiled to generate an .html, .pdf, or

MSWordr .doc file, or

2. Using Sweave, an approach that implements the LaTeX18 document preparation system.

17Markup languages codify the structure and formatting of a document and generally, the relationships among

its components including headings, paragraphs, and hyperlinks (Wikipedia, 2025b). Markup typically refers to

procedural or descriptive languages in which users create code files, with text and semantic tags that will not

resemble the final output, as this will requires code compilation. Examples include troff, TeX (which underlies

LaTeX documents), Markdown, HTML, and XML. HyperText Markup Language (HTML) is the standard markup

language for documents designed for web browser display. Markdown is a highly flexible markup language

for creating formatted text using plain-text. RMarkdown extends Markdown by allowing users to embed code

chunks (from R and other languages) that can be be evaluated and printed during compilation of final output.
18LaTeX – pronounced lay-tek or luh-tek, depending on who you ask– is an open source, high-quality scientific

typesetting system. The R packages sweave and knitr extend LaTeX markup text and formatting, by allowing

users to embed R code chunks that can be evaluated and printed during compilation of PDF output.

https://en.wikipedia.org/wiki/Markdown
https://www.latex-project.org/
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2.10.2.1 R Markdown

The RMarkdown document processing workflow in RStudio is shown Fig 2.6. These steps

are highly modifiable, but can also be run in a more or less automated manner, requiring little

understanding of underlying processes.

Figure 2.6: The process of document creation in R Markdown. Functions in the package

rmarkdown control conversion of .rmd files toMarkdown .md files, using utilities in the package

knitr. The Pandoc program first creates a .tex file when rendering LaTeX PDF documents.

Use ofRMarkdown and .rmd files requires the package rmarkdown (Allaire et al., 2024), which

comes pre-installed in RStudio.

As an initial step, all underlying .rmd files must include a brief YAML19 header (see below)

containing document metadata. A nice summary of YAML features and options in RMarkdown

is provided in this cheatsheet. The remainder of the .rmd document will contain text written

in Markdown syntax, and code chunks. The knit() function from package knitr Xie (2015),

also installed with RStudio, executes all evaluable code within chunks, and formats the code

and output for processing within Pandoc, a program for converting markup files from one

language to another20. Pandoc uses the YAML header to guide this conversion. As an example,

19YAML (pronounced camel) is a data serialization language. The YAML acronym was originally intended

to mean “Yet Another Markdown Language,” but more recently has been given the recursive acronym: “YAML

Ain’t Markup Language.” RMarkdown uses the YAML format header to communicate with Pandoc, a document

converter, written in the Haskell language, embedded in RStudio, to create the desired document output.
20Pandoc can convert Markdown .md files, into many formats including, .rtf, .doc, and .pdf

https://rstudio.github.io/cheatsheets/html/rmarkdown.html
https://en.wikipedia.org/wiki/Pandoc


44 CHAPTER 2. SOME BASICS

if one has requested HTML output, the simple Markdown text: This is a script will be

converted to the HTML formatted: <p>This is a script</p>. One can also write HTML

script or CSS code21 directly into an .rmd document (see Section 11.5). If the desired output

is PDF, Pandoc will convert the .md file into a temporary .tex file, which is then processed by

the LaTex typesetting system. Support for LaTeX can be found at its official website, and at

a large number of informal user-driven venues, including Stack Exchange and Overleaf, an

online LaTeX application. LaTeX will compile the .tex file into a .pdf file. In this process, the

tinytex package (Xie, 2024), which installs the stripped-down LaTeX distribution TinyTex, can

be used.

Creating anRMarkdowndocument is simple inRStudio. We first open an empty .rmddocument

by navigating to File> New File>RMarkdown (Fig 2.7).

Figure 2.7: Part of the RStudio File pulldown menu.

You will delivered to the GUI shown in Fig 2.8. Note that by default Markdown compilation

generates an HTML document.

21Cascading Style Sheets (CSS) is a language for styling output for files written in markup languages including

HTML and Extensible Markup Language (XML).

https://www.latex-project.org/
https://tex.stackexchange.com
https://www.overleaf.com/
https://yihui.org/tinytex/
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Figure 2.8: RStudio GUI for creating an RMarkdown document.

The GUI opens a RMarkdown (.rmd) skeleton document with a tentative YAML header.

Figure 2.9: YAML header to an RMarkdown (.rmd) skeleton document.

Among other options22, the default HTML output can be changed to one of:

output: pdf_document

to create a LaTex→ PDF document, or

22Many rmarkdown output formats are possible including: html_vignette, which provides vignette formatting

appropriate for inclusion in R packages, ioslides_presentation and slidy_presentation, for an HTML-

styled slideshow layout, beamer_presentation, for a PDF slideshow using LaTex→ Beamer formatting, and

powerpoint_presentation for a MS Powerpointr slideshow.

https://ctan.org/pkg/beamer?lang=en
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output: word_document

to create a Wordr document.

A potential concern with HTML documents is portability. Your RMarkdown generated HTML

may look fine when viewed from a browser program on the computer you used to create the

document. This may not be true, however, if you export this file elsewhere, in the absence of a

server host, and without a directory system containing necessary files and applications (see

Garsiel (2018)) 23. There are currently a number of inexpensive (or free) non-dynamic hosting

services including GitHub.

2.10.2.1.1 Writing Text Markdown is a relatively simple procedural markup language,

allowing unformatted text to be written directly into an RMarkdown document. There are

particular scripting procedures, however, for creating headings, formatted text, and other

content.

• Pound signs (e.g., #, ##, ###) can be used as (increasingly nested) hierarchical section

delimiters.

• Italic, bold, and monospace code fonts can be specified by enclosing text in asterisks,

double asterisks, and back ticks, respectively. That is, *italic*, **bold**, and `code`
result in: italic, bold, and code.

• Unordered lists can be created with newlines preceded with asterisks, *, and ordered

lists can be specified with newlines beginning with numbers, e.g., 1., 2., etc.
• Superscripts and subscripts can be generated using: ^script^ and ~script~, respec-
tively. That is, `*r*^2^` and `CO~2~` produce: r2 and CO2.

• Footnotes can be created using the format: `^[footnote]`.
• Web hyperlinks can be created using: `[text](link)`. For instance, `[Amalgam of
R](https://www.amalgamofr.org)` creates: Amalgam of R.

By default, RStudio shows RMarkdown documents as raw source code. This format, however,

can be changed to a more presentational markup (what you see is what you get) format by

clicking on the Visual button that appears at the upper left hand side of RStudio Panel 1 (when

an RMarkdown document is open). The Visual interactive panel contains several interactive

menus reminiscent of a word processor (Fig 2.10). These allow users to specify fonts, and to

insert LaTeX equations (Section 2.10.2.1.3), section hierarchies, bulleted and numbered lists,

and tables.

Figure 2.10: Additional RStudio menu options for an RMarkdown document under the Visual

viewing mode.

2.10.2.1.2 R Code in RMarkdown Chunks The knitr R package facilitates report-building

in both HTML and LaTeX→ PDF formats, within the framework of the rmarkdown package

23This is an online document.

https://github.com/
https://www.amalgamofr.org
https://taligarsiel.com/Projects/howbrowserswork1.htm
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(Fig 2.6). Under knitr, RMarkdown lines beginning ```{r } and ending ``` delimit an R code

“chunk” to be potentially run in R.

Example 2.19.

For example, the chunk:

```{r }
mean(c(1,2,3))
```

would prompt knitr to: 1) show the code in an appropriate highlighted style, 2) run the code

in R (i.e., take the mean of the three numbers), and 3) print the evaluation result into a new

output chunk.

�

The chunk header, ```{r }, can be used to define additional options. These include the

suppression of code evaluation, ```{r , eval = F}, suppression of code printing, ```{r ,
echo = F}, and/or elimination of the chunk from the after running, ```{r , include = F}.
For a complete list of chunk options, run

str(knitr::opts_chunk$get())

If desired, global knitr options for chunks can be set using an initial R chunk or script

(generally with the local chunk option include = F) that defines the components of

knitr::opts_chunk.

Example 2.20.

For example, to suppress the default insertion of pound signs in lines preceding chunk evalua-

tion output, throughout the entire knitted document, one could include the following initial

chunk:

```{r, include = F }
knitr::opts_chunk$set(comment = NA)
```

�

Code chunks can be generated by going to Code>Insert Chunk or by using the RStudio

shortcut Ctrl + Alt + I (Windows and Linux) or Cmd + Alt + I (Mac).

R code can also be invoked inline in a RMarkdown document using the format:

`r some code`

For instance, I could seamlessly place three random numbers generated from a the continuous

uniform distribution, 𝑓(𝑥) = 𝑈𝑁𝐼𝐹(0, 1), inline into text using:
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`r runif(3)`

Here I run an iteration using “hidden” inline R code: 0.04634, 0.96566, 0.14534.

2.10.2.1.3 Equations Inline equations for bothRMarkdownandSweave (discussedbelow)

can be specified under the LaTeX system, which uses dollar signs, $, to delimit equations. For

instance, to obtain the inline equation: 𝑃(𝜃|𝑦) = 𝑃(𝑦|𝜃)𝑃(𝜃)
𝑃(𝑦) , i.e., Bayes theorem, I could type

the LaTeX script into RMarkdown:

$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$

Display-style equations can be specified with two dollar signs, $$. For instance,

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$$ results in:

𝑃(𝜃|𝑦) = 𝑃(𝑦|𝜃)𝑃 (𝜃)
𝑃 (𝑦)

A cheatsheet for LaTeX equation writing can be found here.

2.10.2.1.4 Figures Probably the simplest way to place external figures into a document is

by applying the function knitr::include_graphics() from within a chunk. The following

R Markdown code would insert Fig1.jpg (contained in the working directory) into an R

Markdown document.

```{r }
knitr::include_graphics("Fig1.jpg")
```

Figures can also be generated from the execution of R plotting functions (see Ch 6, 7). For

instance, the following RMarkdown code would place a simple R-generated scatterplot into

the document:

```{r }
plot(1:10)
```

2.10.2.1.5 Tables RMarkdown tables can be created by specifying the following format

(outside of a chunk).

First Header | Second Header
------------- | -------------
Content Cell | Content Cell
Content Cell | Content Cell

https://quickref.me/latex
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Tables, however, can also be be generated by executing R functions within chunks. I generally

use the function knitr::kable() to create RMarkdown→ Pandoc→ HTML tables because

it is relatively simple to use, and allows straightforward tabling of R output.

Example 2.21.

Table 2.10, shows data from the Loblolly dataset in the package datasets. The data track the

growth of loblolly pine trees (Pinus taeda) with respect to seed type and age. The function

head(), nested in kable(), allows one to access the first or last components of an R data

storage object. Bydefault, head() returns the first six values (in this case, the first six dataframe

rows).

knitr::kable(head(Loblolly))

�

I often use functions in the package xtable to build RMarkdown→ Pandoc→ LaTeX→ PDF

tables. Under this approach, one could create Table 2.10 using:

print(xtable::xtable(head(Loblolly)))

This method would also require that one use the command results = 'asis' in the chunk

options.

One can even call for different table approaches on the fly. For instance, I could use the com-

mand eval = knitr::is_html_output()), in the options of a Markdown chunk when using

table code that optimizes HTML formatting, and use eval = knitr::is_latex_output())
to create a table that optimizes LaTeX formatting.

Aside from knitr::kable() and xtable, there are many other R functions and packages that

can be used to create RMarkdown tables, particularly for HTML output. These include:

• The kableExtra (Zhu et al., 2022) package extends knitr::kable() by including styles
for fonts, features for specific rows, columns, and cells, and straightforward merging and

grouping of rows and/or columns. Most kableExtra features extend to both HTML and

PDF formats.

Table 2.10: Loblolly pine data.

height age Seed

1 4.51 3 301

15 10.89 5 301

29 28.72 10 301

43 41.74 15 301

57 52.70 20 301

71 60.92 25 301
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• DT (Xie et al., 2024), awrapper forHTML tables that uses the JavaScript (see Section 11.3)

library DataTables. Among other features, DT allows straightforward implementation in

interactive Shiny apps (Section 11.5).

• Like DT, the reactable package (Lin, 2023) creates flexible, interactive HTML embedded

tables. As with DT, reactable tables add complications when those interactives are

considered as conventional tables in Rmarkdown, with captions and referable labels.

Xie et al. (2020) discuss several other alternatives.

Example 2.22.

An RMarkdown (.rmd) skeleton file generated by RStudio (Figs 2.7-2.9) contains documenta-

tion text, interspersed with example R code in chunks. These been have been modified below

to create a simple Rmarkdown document for summarizing the Loblolly dataset (Fig 2.11).

Figure 2.11: An RMarkdown (.rmd) file with documentation text and interspersed R code in

chunks.

Note the use of echo = FALSE in the final chunk to suppress printing of R code. A snapshot of

the knitted HTML is shown in Fig 2.12.
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Figure 2.12: An HTML document knit from Markdown code in the previous figure. Note that

code is displayed (by default) as well as executed.

�

2.10.2.1.6 bookdown A large number of useful auxiliary features are available for RMark-

down, through the R package bookdown (Xie (2023)). These include an extended capacity for

figure, table, and section numbering and referencing. The bookdown package is not included

with RStudio, and will require installation using the code below. See Section ?? for more

information on loading and installing packages.

install.packages("bookdown") # install bookdown package

To use bookdown we must modify the output: designation in the YAML header to have a

bookdown-specific output. For instance,

output: bookdown::html_document2

to create an HTML document, or
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output: bookdown::pdf_document2

to create a LaTeX→ PDF document, or

output: bookdown::word_document2

to create an MSWordr document24.

Numbering R-generated plots and tables in R in bookdown requires specification of a chunk

label after the language reference, e.g., r, in the chunk generating the plot ot table. Importantly,

many table generating R functions (e.g., knitr::kable() and xtable::xtable(), see below)

also contain a label argument that allows referencing and numbering.

Example 2.23.

In the chunk header below I use the label lobplot. Note that a space is included after r.
Captions can be specified in the chunk header using the chunk option fig.cap or tab.cap for
figures and tables, respectively. The option fig.cap is used below:

```{r lobplot, echo=FALSE, fig.cap= "Loblolly pine height versus age."}

�

Cross-references within the text can be made using the syntax \@ref(type:label), where

label is the chunk label and type is the environment being referenced (e.g., fig, tab, or eq).
For Example 2.23, we might want to type something like: “see Figure \@ref(fig:lobplot).”
in some non-chunk component of the Markdown document.

Specification of a bookdown output format, will result in automated numbering of sections25.

To turn this numbering off, one could modify the YAML output to be:

output:
bookdown::html_document2:

number_sections: false

The code indents shown above are important because YAML, like the language Python, uses

significant indentation. To omit numbering for certain sections, one would retain the default

bookdown output, and add {-} after the unnumbered section heading, e.g.,

# This section is unnumbered {-}

24Many other bookdown extensions to rmarkdown output types are possible including:

html_vignette2, ioslides_presentation2, slidy_presentation2, beamer_presentation2, and

powerpoint_presentation2. Further, there are bookdown formatting algorithms (e.g., pdf_book(),
bookdown::pdf_book(), epub_book(), bs4_book()) that can be used to create entire books, with distinct,

interacting chapters.
25Numbering is also possible in most RMarkdown (non-bookdown) formats. Unlike bookdown this is not the

default, and will require the specification: number_sections: true.
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2.10.2.1.7 Additional Resources for R Markdown and Bookdown The Posit website

houses a number of useful RMarkdown guides, including this brief introduction. Thorough

descriptions of RMarkdown are provided in Xie et al. (2018a) and Xie et al. (2020). The latter

text is currently available as an online resource. Thorough guidance for bookdown is provided

in Xie (2016), which can be viewed as an open-source online document.

2.10.2.2 Sweave

Under the Sweave documentation approach, high quality PDF documents are generated from

LaTeX .tex files, which in turn are created from Sweave .rnw files. A skeleton .rnw document

can be generated in RStudio by going to File>New File>R Sweave26.

2.10.2.2.1 R code in Sweave chunks Sweave chunks can be implemented using knitr-style

formatting, orwith formatting under the function Sweave() (Leisch, 2002). Switching between

these formats in RStudio requires altering options in Build>Configure Build Tools>Sweave.

In RStudio, Sweave code chunks are initiated which <<>>=, which serves as a chunk header,

and are closed with @.

Example 2.24.

Including the chunk below in an .rnw file would: 1) cause the R source code to be printed in a

LaTeX-rendered PDF, 2) run the code in R (the mean of the three number would be calculated),

and 3) print the evaluated result in the output PDF.

<<>>=
mean(c(1,2,3))
@

�

Chunk options in Sweave() are often similar to those in knitr, but are more limited (see

vignette("Sweave")).

Example 2.25.

In Fig 2.13 I create an .rnw file, based on an RStudio skeleton, with text and analyses reflecting

those used with RMarkdown in Example 2.22. We note that instead of the Markdown YAML

header, we now have lines in the preamble defining the type of desired document (e.g., article)

and the LaTeX packages needed for document compilation (e.g., amsmath). All non-chunk text,

including figure and table captions and cross-referencing must follow LaTeX guidelines.

26The document you are reading was either knitted from an R Markdown .rmd file (using bookdown) or a

Sweave .rnw file, created in RStudio.

http://rmarkdown.rstudio.com,%20respectively
https://bookdown.org/yihui/rmarkdown-cookbook/
https://bookdown.org/yihui/bookdown/
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Figure 2.13: A Sweave (.rnw) file with documentation text and interspersed code in chunks.

Fig 2.14 shows a snapshot of the result, following automated .rnw→ knitr→ LaTeX→ .pdf

compilation in RStudio.
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Figure 2.14: A .pdf document resulting from compilation of Sweave code in the previous figure.

�

2.10.2.3 Purl

R chunk code can be extracted from an .rmd or an .rnw file using the function knitr::purl().
For instance, assume that the RMarkdown loblolly pine summary shown in Fig 2.11 is saved

in the working directory under the name lob.rmd. Code from the file will be extracted to a

script file called lob.R, located in the working directory, if one types:
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purl("lob.rmd")

Exercises

1. Create an RMarkdown document to contain your homework assignment. Modify the

YAML header to allow numbering of figures and tables, but not sections. This will require

use of the bookdown package (see Section 2.10.2.1.6). Install bookdown at the R console

(not within a document chunk). To test the formatting, perform the following steps:

(a) Create a section header called Question 1 and a subsection header called (a).

Under (a) type "completed".
(b) Under the subsection header (b), insert a chunk, and create a simple plot of points at

the coordinates: {1, 1}, {2, 2}, {3, 3}, by typing the code: plot(1:3) in the chunk.

Create a label for the chunk, and a create caption for the plot using the knitr chunk

option, fig.cap.
(c) Under the subsection header (c), create a cross reference for the plot from (b) (see

Section 2.10.2.1.6).

(d) Under the subsection header (d), write the equation, 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, using
LaTeX. As noted earlier, a LaTeX equation cheatsheet can be found here.

(e) Render (knit) the final document as either an .html file or a .doc file. Include other

assigned exercises for this Chapter as directed, using the general formatting approach

given in Question 1.

2. Perform the following operations.

(a) Leave a note to yourself.

(b) Create and examine an object called x that contains the numeric entries 1, 2, and 3.

(c) Make a copy of x called y.
(d) Show the class of y.
(e) Show the base type of y.
(f) Show the attributes of y.
(g) List the current objects in your work session.

(h) Identify your working directory.

3. Distinguish R expressions and assignments.

4. Sometimes R reports unexpected results for its classes and base types.

(a) Create x <- factor("a","a","b") and show the class of x.
(b) Type ?factor. What is a factor in R?
(c) Show the base type of x? Is this surprising? Why? Type ?integer. What is an

integer in R?

5. Solve the following mathematical operations using R.

(a) 1 + 3/10 + 2
(b) (1 + 3)/10 + 2
(c) (4 ⋅ (3−4)

23 )
2

(d) log2(3
1/2)

https://quickref.me/latex
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(e) 3𝑥3 + 3𝑥2 + 2where 𝑥 = {0, 1.5, 4, 6, 8, 10}
(f) 4(𝑥 + 𝑦)where 𝑥 = {0, 1.5, 4, 6, 8} and 𝑦 = {−2, 0.5, 3, 5, 8}.
(g) 𝑑

𝑑𝑥 tan(𝑥)2.3 ⋅ 𝑒3𝑥

(h) 𝑑2

𝑑𝑥2
3

4𝑥4

(i) ∫12
3

24𝑥 + ln(𝑥)𝑑𝑥

(j) ∫∞
−∞

1√
2𝜋𝑒

−𝑥2
2 𝑑𝑥 (i.e., find the area under a standard normal pdf).

(k) ∫∞
−∞

𝑥√
2𝜋𝑒

−𝑥2
2 𝑑𝑥 (i.e., find𝐸(𝑋) for a standard normal pdf).

(l) ∫∞
−∞

𝑥2
√
2𝜋𝑒

−𝑥2
2 𝑑𝑥 (i.e., find𝐸(𝑋2) for a standard normal pdf).

(m) Find the sum, cumulative sum, product, cumulative product, arithmetic mean,

median and variance of the data x = c(0, 1.5, 4, 6, 8, 10).

6. The velocity of the earth’s rotation on its axis at the equator,𝐸, is approximately 1674.364

km/h, or 1040.401m/h27. We can calculate the velocity of the rotation of the earth at any

latitude with the equation, 𝑉 = cos(latitudeo) × 𝐸. Using R, simultaneously calculate

rotational velocities for latitudes of 0,30,60, and 90 degrees north, or south, latitude

(they will be the same). Remember, the function cos() assumes inputs are in radians,

not degrees.

27The circumference of the earth at the equator is 40,075.02 km (24,901.5 mi). The earth completes one full

rotation on its axis with respect to distant stars in 23 hours 56minutes 4.091 seconds (a sidereal day). Thismeans

that in 24 hours, the earth rotates 24
23+(56/60)+(4.091/60)/60 = 1.002738 times. And this means that the velocity

of the earth at the equator is 1.002738×40075.02
24 = 1674.364 k⋅h−1, or 0.621371 × 1674.364 = 1040.401

m⋅h−1.
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Chapter 3

Data Objects, Packages, and Datasets

“In God we trust. All others [must] have data.”

- Edwin R. Fisher, cancer pathologist

3.1 Data Storage Objects

Depending on who you talk to1, there are five primary types of data storage objects in R. These

are: (atomic) vectors, matrices, arrays, dataframes, and lists2.

3.1.1 Vectors

Historically (and confusingly), the conception of an R “vector” can be traced directly to the

earliest object-class defined in the S language3. From this inception, an R vector is either an

atomic vector –thus belonging one of the six atomic vector types: logical, integer, numeric,
complex, character and raw– or an object of either class expression or class list. Objects
of class expression generally contain mathematical calls or symbols that can be evaluated

with the function eval() (see Section 2.9.5). Objects of class list are formally considered in

Section 3.1.5.

Recall that R classes were introduced in Section 2.3.5 and fundamental classes were listed in

Table 2.1. Because of their importance, the first eight classes shown in Table 2.1 classify vector

types, and the first six specifically classify atomic vectors.

1For instance, Wickham (2019) views matrices, arrays, dataframes as vectors.
2Note that distinctions of these objects are not always clear or consistent. For instance, a names attribute can

be given to elements of vectors and lists, and columns of dataframes. However, only names from dataframes and

lists can be made visible using attach, or called using $.
3The class vector in S3was limited to objects that were index-able and subsettable by position (Chambers,

2008). That is, for the vector object x, x[i]would give the 𝑖th element of x (see Section 3.4). Although many

non-vector R objects (e.g., matrices, and dataframes) are also index-able and subsettable, underlying components

of those objects can nonetheless be viewed as atomic vectors (Fig 3.1).

59
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3.1.1.1 Atomic vectors

Atomic vectors constitute “the essential bottom layer” of R data (Chambers, 2008). This

characteristic is evident when viewing the relationship of atomic vectors to other data storage

objects (Fig 3.1).

Figure 3.1: An example of R atomic vectors as building blocks for more complex data storage

objects. Five atomic vectors are shown. Three are numeric (colored blue), one is logical
(colored peach), and one is a character vector (light green). The numeric vectors are incor-
porated into a single matrix (which can have only one data storage mode), using cbind(). One
of the numeric vectors, along with the character and logical vectors are incorporated into

a dataframe (which can have multiple data storage modes). Finally, the matrix and dataframe

are brought into a list, along with an anomolous function and character string.
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Atomic vectors are simple data storage objects with a one data storage mode (base type). That

is, a single atomic vector cannot contain data with both logical, and character base types
(and classes), and a single atomic vector of class numeric, (which can have base types integer
or double) cannot contain data from both of those base types.

We can create atomic vectors using the function c().

Example 3.1.

Here is a logical atomic vector. Note that it only contains the entries TRUE and FALSE.

x <- c(TRUE, FALSE, TRUE)
class(x)

[1] "logical"

is.vector(x)

[1] TRUE

is.atomic(x)

[1] TRUE

Logical objects, and the testing of object class membership –demonstrated above with

is.logical(x), is.vector(x), and is.atomic(x)– are formally introduced in Sections 3.2

and 3.3, respectively.

�

Example 3.2.

Here is an atomic vector of character strings. That is, a character vector4. Recall that the

individual strings require quote " " or ' ' delimitation.

x <- c("string1", "string2")
class(x)

[1] "character"

is.vector(x)

[1] TRUE

is.atomic(x)

[1] TRUE
4R frequently uses character vectors, i.e., vec <- c("a", "b", "c"). Each entry in vecwould be considered

as a character string.
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�

Example 3.3.

We can explicitly define a number, x, to be an an integer with the script xL. Thus, the code
below specifies an atomic integer vector:

x <- c(1L, 3L, 7L)
class(x)

[1] "integer"

typeof(x)

[1] "integer"

is.vector(x)

[1] TRUE

is.atomic(x)

[1] TRUE

�

Example 3.4.

Here is a numeric atomic vector stored with double precision:

x <- c(1, 2, 3)
class(x)

[1] "numeric"

typeof(x)

[1] "double"

is.vector(x)

[1] TRUE

is.atomic(x)

[1] TRUE

�

Atomic vectors have order and length, but no dimension. This is clearly different from the linear

algebra conception of a vector. Specifically, in linear algebra, a row vector with 𝑛 elements has

dimension 1 × 𝑛 (1 row and 𝑛 columns), whereas a column vector has dimension 𝑛 × 1.
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Example 3.5.

Consider the numeric atomic vector from the previous example (Example 3.4).

length(x)

[1] 3

dim(x)

NULL

The function as.matrix(x) (see Section 3.3.4) can be used to coerce x to have a matrix

structure with dimension 3 × 1 (3 rows and 1 column). Thus, in R a matrix has dimension, but

a vector does not.

dim(as.matrix(x))

[1] 3 1

�

Any single value object of class numeric, complex, integer, logical, or character is an

atomic vector.

Example 3.6.

Complex numbers in R are defined by codifying their real parts conventionally, and their

imaginary parts with i. Recall that the square of an imaginary number 𝑏𝑖 is−𝑏2.

x <- -2 + 1i^2 # -2 is real
class(x)

[1] "complex"

typeof(x)

[1] "complex"

is.vector(x)

[1] TRUE

�

We can add a names attribute to vector elements.

Example 3.7.

For example:
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x <- c(a = 1, b = 2, c = 3)

x

a b c
1 2 3

Recall that the function attributes() can be used to list an object’s attributes:

attributes(x)

$names
[1] "a" "b" "c"

The function attr() can be used to obtain (or set) values associatedwith a particular attribute.

attr(x, "names") # or names(x)

[1] "a" "b" "c"

�

Importantly, when an element-wise operation is applied to two unequal length vectors, Rwill

generate a warning and automatically recycle elements of the shorter vector.

Example 3.8.

For example,

c(1, 2, 3) + c(1, 0, 4, 5, 13)

Warning in c(1, 2, 3) + c(1, 0, 4, 5, 13): longer object length is not a
multiple of shorter object length

[1] 2 2 7 6 15

In this case, the result of the addition of the two vectors is: 1+ 1, 2+ 0, 3+ 4, 1+ 5, and 2+ 13.
Thus, the first two elements in the first object are recycled in the vector-wise addition.

�

3.1.2 Matrices

Matrices are two-dimensional (row and column) data structures whose elements must all have

the same data storage mode (typically "double") (Fig 3.1).

The function matrix() can be used to create matrices.
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Example 3.9.

Consider the following examples:

A <- matrix(ncol = 2, nrow = 2, data = c(1, 2, 3, 2))
A

[,1] [,2]
[1,] 1 3
[2,] 2 2

Note that matrix() assumes that data are entered “by column.” That is, the first two entries

in the data argument are placed in column one, and the last two entries are placed in column

two. One can enter data “by row” by adding the argument byrow = TRUE.

B <- matrix(ncol = 2, nrow = 2, data = c(1, 2, 3, 2), byrow = TRUE)
B

[,1] [,2]
[1,] 1 2
[2,] 3 2

�

3.1.2.1 Matrix algebra

Matrix algebra operations can be applied directly to Rmatrices (Table 3.1). For matrices with

the same dimension, the + and - operators allow elementwise addition and subtraction of

matrices, and the * operator serves as the elementwise Hadamard product operator. A non-
conformable arrays error will be given when performing elementwise addition, subtraction

or multiplication of two matrices with unequal dimensions, or when the number of columns

in the first matrix does not equal the number of rows in the second matrix in standard matrix

multiplication using %*%. Recall that addition, subtraction or multiplication of two unequal

length vectors will result in recycling of elements of the shorter vector (Section 3.1.1.1).

More complex matrix analyses are also possible, including spectral decomposition (function

eigen()), and single value, QR, and Cholesky decompositions (the functions svd(), qr(),
chol(), respectively).

Example 3.10.

In Example 3.9, matrix A has the form:

𝐴 = [1 3
2 2] .

Consider the operations:
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Table 3.1: Simple matrix algebra operations in R. In all operations 𝐴 (and correspondingly, A)
is a matrix, and 𝑎 (and correspondingly, a) is a vector.

Operator Operation To.find. We.type.

t() Matrix transpose 𝐴𝑇 t(A)
+, - Addition or subtraction 𝐴 + 𝐴 A+A
* Hadamard product 𝐴 ⊙ 𝐴 A*A
outer() Outer product 𝑎 ⊗ 𝑎 outer(a,a)
%*% Matrix multiplication 𝐴 ⋅ 𝐴 A%*%A
det() Determinant det(𝐴) det(a)
solve() Matrix inverse 𝐴−1 solve(A)

t(A)

[,1] [,2]
[1,] 1 2
[2,] 3 2

A %*% A

[,1] [,2]
[1,] 7 9
[2,] 6 10

det(A)

[1] -4

solve(A)

[,1] [,2]
[1,] -0.5 0.75
[2,] 0.5 -0.25

�

We can use the function cbind() to combine vectors into matrix columns,

a <- c(1, 2, 3); b <- c(2, 3, 4)
cbind(a, b)

a b
[1,] 1 2
[2,] 2 3
[3,] 3 4
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and use the function rbind() to combine vectors into matrix rows.

rbind(a,b)

[,1] [,2] [,3]
a 1 2 3
b 2 3 4

3.1.3 Arrays

Arrays are one, two dimensional (matrix), or three or more dimensional data structures whose

elements contain a single type of data. Thus, while all matrices are arrays, not all arrays are

matrices.

class(A)

[1] "matrix" "array"

As with matrices, elements in arrays can have only one data storage mode.

typeof(A) # base type (data storage mode)

[1] "double"

The function array() can be used to create arrays. The first argument in array() defines the
data. The second argument is a vector that defines both the number of dimensions (this will be

the length of the vector), and the number of levels in each dimension (numbers in dimension

elements).

Example 3.11.

Here is a 2 × 2 × 2 array:

some.data <- c(1, 2, 3, 4, 5, 6, 7, 8)
B <- array(some.data, c(2, 2, 2))
B

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8
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class(B)

[1] "array"

�

3.1.4 Dataframes

Like matrices, dataframes are two-dimensional structures. Dataframe columns, however,

can have different data storage modes (e.g., double and character) (Fig 3.1). The function
data.frame() can be used to create dataframes.

df <- data.frame(numeric = c(1, 2, 3), non.numeric = c("a", "b", "c"))
df

numeric non.numeric
1 1 a
2 2 b
3 3 c

class(df)

[1] "data.frame"

Because of the possibility of different data storagemodes for distinct columns, the data storage

mode of a dataframe is "list" (see Section 3.1.5, below). Specifically, a dataframe is a two

dimensional list, whose storage elements are columns.

typeof(df)

[1] "list"

A names attribute will exist for each dataframe column5.

Example 3.12.

Consider the dataframe df:

names(df)

[1] "numeric" "non.numeric"

The $ operator allows access to dataframe column names.

5Arrays (including matrices) will generally be numeric storage structures, and cannot have a names attribute.
Instead, row names and column names can be applied using the functions row.names() and col.names(). These,
however, cannot be made visible to search paths with attach() or called with $.
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df$non.numeric

[1] "a" "b" "c"

The $ operator allows partial matcheswhen specifying dataframe names:

df$non

[1] "a" "b" "c"

�

The function attach() allows R to recognize column names of a dataframe as global variables.

Example 3.13.

Following attachment of df, the column non.numeric can be directly accessed:

attach(df)
non.numeric

[1] "a" "b" "c"

The function detach() is the programming inverse of attach().

detach(df)
non.numeric

Error: object 'non.numeric' not found

�

The functions rm() and remove()will entirely remove any R-object –including a vector, ma-

trix, or dataframe– from a session. To remove all objects from the workspace one can use

rm(list=ls()) or (in RStudio) the “broom” button in the environments and history panel6.

A safer alternative to attach() is the function with(). Using with() eliminates concerns

about multiple variables with the same name becoming mixed up in functions. This is because

the variable names for a dataframe specified in with()will not be permanently attached in an

R-session.

Example 3.14.

Despite the removal of the df column non.numeric from the R search path in the second part

of Example 3.13, the column can be called directly when using with().
6All objects from a specific class can also be removed from a workspace. For example, to remove all

dataframes, from a work session one could use: rm(list=ls(all=TRUE)[sapply(mget(ls(all=TRUE)),
class) == "data.frame"])
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with(df, non.numeric)

[1] "a" "b" "c"

�

3.1.5 Lists

Lists are often used to containmiscellaneous associated objects. Like dataframes, lists need not

use a single data storage mode. Unlike dataframes, however, lists can include objects that do

not have the same dimensionality, including functions, character strings, multiple matrices and

dataframes with varying dimensionality, and even other lists (Fig 3.1). The function list()
can be used to create lists.

Example 3.15.

Here we explore the characteristics of a simple list.

ldata <- list(first = c(1, 2, 3), second = "this.is.a.list")
ldata

$first
[1] 1 2 3

$second
[1] "this.is.a.list"

class(ldata)

[1] "list"

typeof(ldata)

[1] "list"

Note that lists are vectors:

is.vector(ldata)

[1] TRUE

Although they are not atomic vectors:

is.atomic(ldata)

[1] FALSE

�
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Reflecting dataframes, objects in lists can be called with partial matching using the $ operator.
Here is the character string second from ldata.

ldata$sec

[1] "this.is.a.list"

The function str attempts to display the internal structure of an R object. It is extremely useful

for succinctly displaying the contents of complex objects like lists.

Example 3.16.

For ldata1we have:

str(ldata)

List of 2
$ first : num [1:3] 1 2 3
$ second: chr "this.is.a.list"

The output confirms that ldata is a list containing two objects: a sequence of numbers from 1

to 3, and a character string.

�

The underlying vector structure of dataframes and lists (Fig 3.1) results in a potential nested

configuration of base types. In particular, although all R objects must have a single overarching

base type, dataframe and list subcomponents may contain data with distinct base types.

Example 3.17.

For instance,

typeof(df)

[1] "list"

typeof(ldata)

[1] "list"

typeof(df$num);

[1] "double"

typeof(ldata$sec)

[1] "character"

�



72 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

The function do.call() is useful for large scale manipulations of data storage objects, partic-

ularly lists.

Example 3.18.

For example, what if you had a list containing multiple dataframes with the same column

names that you wanted to bind together?

ldata2 <- list(df1 = data.frame(lo.temp = c(-1,3,5),
high.temp = c(78, 67, 90)),

df2 = data.frame(lo.temp = c(-4,3,7),
high.temp = c(75, 87, 80)),

df3 = data.frame(lo.temp = c(-0,2),
high.temp = c(70, 80)))

You could do something like:

do.call("rbind",ldata2)

lo.temp high.temp
df1.1 -1 78
df1.2 3 67
df1.3 5 90
df2.1 -4 75
df2.2 3 87
df2.3 7 80
df3.1 0 70
df3.2 2 80

Or what if I wanted to replicate the df3 dataframe from ldata2 above, by binding it onto the
bottom of itself three times? I could do something like:

do.call("rbind", replicate(3, ldata2$df3, simplify = FALSE))

lo.temp high.temp
1 0 70
2 2 80
3 0 70
4 2 80
5 0 70
6 2 80

Note the use of the function replicate().

�
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3.2 Boolean Operations

Computer operations that dichotomously classify statements are called logical or Boolean. In

R, a Boolean procedure will always return one of the values TRUE or FALSE. R logical operators

are listed in Table 3.2.

Table 3.2: Logical (Boolean) operators in R; x, y, and z in columns three and four are R objects.

Operator Operation To ask: We type:

> > Is x greater than y? x > y
>= ≥ Is x greater than or equal to y? x >= y
< < Is x less than y? x < y
<= ≤ Is x less than or equal to y x <= y
== = Is x equal to y? x == y
!= ≠ Is x not equal to y? x != y
& and Do x and y equal z? x & y == z
&& and (control flow) Do x and y equal z? x && y == z
| or Do x or y equal z? x | y == z
|| or (control flow) Do x or y equal z? x || y == z

Note that there are two ways to specify “and” (& and &&), and two ways to specify “or” (| and
||). The longer forms of “and” and “or” evaluate queries from left to right, stopping when

a result is determined. Thus, this form is more appropriate for programming control-flow

operations.

Example 3.19.

For demonstration purposes, here is a simple dataframe:

dframe <- data.frame(
Age = c(18,22,23,21,22,19,18,18,19,21),
Sex = c("M","M","M","M","M","F","F","F","F","F"),
Weight_kg = c(63.5,77.1,86.1,81.6,70.3,49.8,54.4,59.0,65,69)
)

dframe

Age Sex Weight_kg
1 18 M 63.5
2 22 M 77.1
3 23 M 86.1
4 21 M 81.6
5 22 M 70.3
6 19 F 49.8
7 18 F 54.4
8 18 F 59.0



74 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

9 19 F 65.0
10 21 F 69.0

The R logical operator for equals is == (Table 3.2). Thus, to identify Age outcomes equal to 21

we type:

with(dframe, Age == 21)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE

The argument Age == 21 has base type logical.

typeof(dframe$Age == 21)

[1] "logical"

The unary operator for “not” is ! (Table 3.2). Thus, to identify Age outcomes not equal to 21

we could type:

with(dframe, Age != 21)

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

Multiple Boolean queries can be made. Here we identify Age data less than 19, or equal to 21.

with(dframe, Age < 19 | Age == 21)

[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE

Queries can involve multiple variables. For instance, here we identify males less than or equal

to 21 years old that weigh less than 80 kg.

with(dframe, Age <= 21 & Sex == "M", weight < 80)

[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

�

3.3 Testing and Coercing Classes

3.3.1 Testing Classes

As demonstrated in Section 3.1, functions exist to logically test for object membership

to major R classes. These functions generally begin with an is. prefix and include:

is.atomic(), is.vector(), is.matrix(), is.array(), is.list(), is.factor(),
is.double(), is.integer() is.numeric(), is.character(), and many others.
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The Boolean function is.numeric() can be used to test if an object or an object’s components

behave like numbers7.

Example 3.20.

For example,

x <- c(23, 34, 10)
is.numeric(x)

[1] TRUE

is.double(x)

[1] TRUE

Thus, x contains numbers stored with double precision.

�

Data objects with categorical entries can be created using the function factor(). In statistics

the term “factor” refers to a categorical variable whose categories (factor levels) are likely

replicated as treatments in an experimental design.

Example 3.21.

For example,

x <- factor(c(1,2,3,4))
x

[1] 1 2 3 4
Levels: 1 2 3 4

is.factor(x)

[1] TRUE

�

The R class factor streamlines many analytical processes, including summarization of a quanti-

tative variable with respect to a factor and specifying interactions of two or more factors.

Example 3.22.

Here we see the interaction of levels in xwith levels in another factor, y.

7The numeric class is often used as an alias for class double. In fact, as.numeric() is identical to

as.double(), and numeric() is identical to double() (Wickham, 2019).
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y <- factor(c("a","b","c","d"))
interaction(x, y)

[1] 1.a 2.b 3.c 4.d
16 Levels: 1.a 2.a 3.a 4.a 1.b 2.b 3.b 4.b 1.c 2.c 3.c 4.c 1.d 2.d ... 4.d

Sixteen interactions are possible, although only four actually occur when simultaneously

considering x and y.

�

To decrease memory usage8, objects of class factor have an unexpected base type:

typeof(x)

[1] "integer"

Despite this designation, and the fact that categories in x are distinguished using numbers, the

entries in x do not have a numerical meaning and cannot be evaluated mathematically.

is.numeric(x)

[1] FALSE

x + 5

Warning in Ops.factor(x, 5): '+' not meaningful for factors

[1] NA NA NA NA

Occasionally an ordering of categorical levels is desirable. For instance, assume that we wish

to apply three different imprecise temperature treatments "low", "med" and "high" in an

experiment with six experimental units. While we do not know the exact temperatures of

these levels, we know that "med" is hotter than "low" and "high" is hotter than "med". To
provide this categorical orderingwe canusefactor(data, ordered = TRUE)or the function
ordered().

Example 3.23.

x <- factor(c("med","low","high","high","med","low"),
levels = c("low","med","high"),
ordered = TRUE)

x

8All numeric objects inR are storedwith double-precision, andwill require two adjacent locations in computer

memory (see Ch 12). Numeric objects coerced to be integers (with as.intger()) will be stored with double

precision, although one of the storage locations will not be used. As a result, integers are not conventional double

precision data.
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[1] med low high high med low
Levels: low < med < high

is.factor(x)

[1] TRUE

is.ordered(x)

[1] TRUE

The levels argument in factor() specifies the correct ordering of levels.

�

3.3.2 ifelse()

The function ifelse() can be applied to atomic vectors or one dimensional arrays (e.g., rows

or columns) to evaluate a logical argument and provide particular outcomes if the argument is

TRUE or FALSE. The function requires three arguments.

• The first argument, test, gives the logical test to be evaluated.
• The second argument, yes, provides the output if the test is true.
• The third argument, no, provides the output if the test is false.

For instance:

ifelse(dframe$Age < 20, "Young", "Not so young")

[1] "Young" "Not so young" "Not so young" "Not so young"
[5] "Not so young" "Young" "Young" "Young"
[9] "Young" "Not so young"

3.3.3 if, else, any, and all

A more generalized approach to providing a condition and then defining the consequences

(often used in functions) uses the commands if and else, potentially in combination with the

functions any() and all(). For instance:

if(any(dframe$Age < 20)) "Young" else "Not so Young"

[1] "Young"

and

if(all(dframe$Age < 20))"Young" else "Not so Young"

[1] "Not so Young"
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3.3.4 Coercion

Objects can be switched from one class to another using coercion functions that begin with

an as. prefix9. Analogues to the testing (.is) functions listed above are: as.matrix(),
as.array(), as.list(), as.factor(), as.double(), as.integer(), as.numeric(), and
as.character().

Example 3.24.

For instance, a non-factor object can be coerced to have class factor with the function

as.factor().

x <- c(23, 34, 10)
is.factor(x)

[1] FALSE

y <- as.factor(x)
is.factor(y)

[1] TRUE

�

Coercion may result in removal and addition of attributes.

Example 3.25.

For instance, conversion from an atomic vector to a matrix below results in the loss of the

vector names attribute.

x <- c(eulers_num = exp(1), log_exp = log(exp(1)), pi = pi)
x

eulers_num log_exp pi
2.7183 1.0000 3.1416

names(x)

[1] "eulers_num" "log_exp" "pi"

y <- as.matrix(x)
names(y)

NULL

�
9Coercion can also be implemented using class generating functions described earlier. For instance,

data.frame(matrix(nrow = 2, data = rnorm(4))) converts a 2 × 2matrix into an equivalent dataframe.
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Coercion may result in very unexpected outcomes.

Example 3.26.

Here NAs (Section 3.3.5) result when attempting to coerce a object with apparentmixed storage

modes to class numeric.

x <- c("a", "b", 10)
as.numeric(x)

Warning: NAs introduced by coercion

[1] NA NA 10

�

Combining R objects with different base types results in coercion to a single base type. See

Chambers (2008) for coercion rules.

Example 3.27.

For example, combining a numeric vector with base type double and a character vector,

results in an object with class and base type character.

x <- c(1.2, 3.2, 1.5)
y <- c("a", "b", "c")
z <- c(x, y)
z

[1] "1.2" "3.2" "1.5" "a" "b" "c"

class(z); typeof(z)

[1] "character"

[1] "character"

and combining a numeric vector with base type double, and a numeric vector with base type

integer results in a numeric vector with base type double.

y <- c(1L, 2L, 3L)
z <- c(x, y)
z

[1] 1.2 3.2 1.5 1.0 2.0 3.0

class(z); typeof(z)

[1] "numeric"

[1] "double"

�



80 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

3.3.5 NA

R identifies missing values (empty cells) as NA, which means “not available.” Hence, the R

function to identify missing values is is.na().

Example 3.28.

For example:

x <- c(2, 3, 1, 2, NA, 3, 2)
is.na(x)

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE

Conversely, to identify outcomes that are not missing, I would use the “not” operator to specify

!is.na().

!is.na(x)

[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE

�

There are a number of R functions to get rid of missing values. These include na.omit().

Example 3.29.

For example:

na.omit(x)

[1] 2 3 1 2 3 2
attr(,"na.action")
[1] 5
attr(,"class")
[1] "omit"

Wesee thatR dropped themissing observation and then told uswhich observationwas omitted

(observation number 5).

�

Functions inR often, but not always, have built-in capacities to handlemissing data, for instance,

by calling na.omit().

Example 3.30.

Consider the following dataframe which provides plant percent cover data for four plant

species at two sites. Plant species are identified with four letter codes, consisting of the first

two letters of the Linnaean genus and species names.
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field.data <- data.frame(ACMI = c(12, 13), ELSC = c(0, 4), CAEL = c(NA, 2),
CAPA = c(20, 30), TACE = c(0, 2))

row.names(field.data) <- c("site1", "site2")

field.data

ACMI ELSC CAEL CAPA TACE
site1 12 0 NA 20 0
site2 13 4 2 30 2

The function complete.cases() checks for completeness of data, by row, in a data array.

complete.cases(field.data)

[1] FALSE TRUE

If na.omit() is applied in this context, the entire row containing the missing observation will

be dropped.

na.omit(field.data)

ACMI ELSC CAEL CAPA TACE
site2 13 4 2 30 2

Unfortunately, this means that information about the other four species at site one will lost.

Thus, it is generally more rational to remove NA values while retaining non-missing values. For

instance, many statistical functions have to capacity to base summaries on non-NA data.

mean(as.numeric(field.data[1,]), na.rm = TRUE)

[1] 8

�

3.3.6 NaN

ThedesignationNaN is associatedwith the current conventions of the IEEE754-2008arithmetic

used by R. It means “not a number.” Mathematical operations which produce NaN include:

0/0

[1] NaN

Inf-Inf

[1] NaN
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sin(Inf)

Warning in sin(Inf): NaNs produced

[1] NaN

3.3.7 NULL

In object oriented programming, a null object has no referenced value or has a defined neutral

behavior (Wikipedia, 2023c). Occasionally one may wish to specify that an R object is NULL.
For example, a NULL object can be included as an argument in a function without requiring

that it has a particular value or meaning.

Example 3.31.

It is straightforward to designate an object as NULL.

x <- NULL

The class and base type of x are NULL:

class(x)

[1] "NULL"

typeof(x)

[1] "NULL"

�

It should be emphasized that R-objects or elements within objects that are NA, NaN or NULL
cannot be identified with the Boolean operators == or !=.

Example 3.32.

For instance:

x == NULL

logical(0)

y <- NA

y == NA

[1] NA

�
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Instead, one should use is.na(), is.nan() or is.null() to identify NA, NaN or NULL compo-

nents, respectively.

Example 3.33.

That is:

is.null(x)

[1] TRUE

!is.null(x)

[1] FALSE

is.na(y)

[1] TRUE

!is.na(y)

[1] FALSE

�

3.4 Accessing and Subsetting Data With []

One can subset data storage objects using square bracket operators, i.e., [], along with a variety

of functions10. Because of their simplicity, I focus on square brackets for subsetting here.

Gaining skills with square brackets will greatly enhance your ability to manipulate datasets in

R.

As toy datasets, here are an atomic vector (with a names attribute), a matrix, a three dimen-

sional array, a dataframe, and a list:

vdat <- c(a = 1, b = 2, c = 3)
vdat

a b c
1 2 3

mdat <- matrix(ncol = 2, nrow = 2, data = c(1, 2, 3, 4))
mdat

[,1] [,2]
[1,] 1 3

10For instance, subset(), split(), and dplyr::filter().
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[2,] 2 4

adat <- array(dim = c(2, 2, 2), data = c(1, 2, 3, 4, 5, 6, 7, 8))
adat

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

ddat <- data.frame(numeric = c(1, 2, 3), non.numeric = c("a", "b", "c"))
ddat

numeric non.numeric
1 1 a
2 2 b
3 3 c

ldat <- list(element1 = c(1, 2, 3), element2 = "this.is.a.list")
ldat

$element1
[1] 1 2 3

$element2
[1] "this.is.a.list"

To obtain the 𝑖th canonical component from an atomic vector, matrix, array, dataframe or list

named foowe would specify foo[i].

Example 3.34.

For instance, here is the first component of our toy data objects:

vdat[1]

a
1

mdat[1]
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[1] 1

adat[1]

[1] 1

ddat[1]

numeric
1 1
2 2
3 3

ldat[1]

$element1
[1] 1 2 3

Importantly, we see that dataframes and lists view their 𝑖th canonical component as the 𝑖th
column and the 𝑖th list element, respectively.

�

We can also apply double square brackets, i.e., [[]] to list-type objects, i.e., atomic vectors and

explicit lists, with similar results. Note, however, that the data subsets will now be missing

their name attributes.

Example 3.35.

For example:

vdat[[1]]

[1] 1

ldat[[1]]

[1] 1 2 3

�

If a data storage object has a names attribute, then a name can be placed in square brackets to

obtain corresponding data.

Example 3.36.

For example:

ddat["numeric"]
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numeric
1 1
2 2
3 3

The advantage of square brackets over $ in this an application is that several components can

be specified simultaneously using the former approach:

ddat[c("non.numeric","numeric")]

non.numeric numeric
1 a 1
2 b 2
3 c 3

�

If foo has a row× column structure, i.e., a matrix, array, or dataframe, we could obtain the 𝑖th
column from foo using foo[,i] (or foo[[i]]) and the 𝑗th row from foo using foo[j,].

Example 3.37.

For example, here is the second column from mdat,

mdat[,2]

[1] 3 4

and the first row from ddat.

ddat[1,]

numeric non.numeric
1 1 a

�

The element from foo corresponding to row j and column i can be accessed using: foo[j, i],
or foo[,i][j], or foo[j,][i].

Example 3.38.

For example:

mdat[1,2]; mdat[,2][1]; mdat[1,][2] # 1st element from 2nd column

[1] 3

[1] 3

[1] 3
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�

Arrays may require more than two indices. For instance, for a three dimensional array, foo,
the specification foo[,j,i]will return the entirety of the 𝑗th column in the 𝑖th component of

the outermost dimension of foo, whereas foo[k,j,i]will return the 𝑘th element from the

𝑗th column in the 𝑖th component of the outermost dimension of foo.

Example 3.39.

For example:

adat[,2,1]

[1] 3 4

adat[1,2,1]

[1] 3

adat[2,2,1]

[1] 4

�

Ranges or particular subsets of elements from a data storage object can also be selected.

Example 3.40.

For instance, here I access rows two and three of ddat:

ddat[2:3,] # note the position of the comma

numeric non.numeric
2 2 b
3 3 c

�

I can drop data object components by using negative integers in square brackets.

Example 3.41.

Here I obtain an identical result to the example above by dropping row one from ddat:

ddat[-1,] # drop row one

numeric non.numeric
2 2 b
3 3 c
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Here I obtain ddat rows one and three in three different ways:

ddat[c(1,3),]

numeric non.numeric
1 1 a
3 3 c

ddat[-2,]

numeric non.numeric
1 1 a
3 3 c

ddat[2, drop = TRUE]

Warning in `[.data.frame`(ddat, 2, drop = TRUE): 'drop' argument will be
ignored

non.numeric
1 a
2 b
3 c

�

Square braces can also be used to rearrange data components.

ddat[c(3,1,2),]

numeric non.numeric
3 3 c
1 1 a
2 2 b

Duplicate components:

ldat[c(2,2)]

$element2
[1] "this.is.a.list"

$element2
[1] "this.is.a.list"

Or even replace data components:
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ddat[,2] <- c("d","e","f")
ddat

numeric non.numeric
1 1 d
2 2 e
3 3 f

3.4.1 Subsetting a Factor

Importantly, the factor level structure of a factor will remain intact even if one or more of the

levels are entirely removed.

Example 3.42.

For example:

fdat <- as.factor(ddat[,2])
fdat

[1] d e f
Levels: d e f

fdat[-1]

[1] e f
Levels: d e f

Note that the level a remains a characteristic of fdat, even though the cell containing the lone

observation of awas removed from the dataset. This outcome is allowed because it is desirable

for certain analytical situations (for instance, summarizations that should acknowledgemissing

data for some levels).

�

To remove levels that no longer occur in a factor, we can use the function droplevels().

Example 3.43.

For example:

droplevels(fdat[-1])

[1] e f
Levels: e f

�
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3.4.2 Subsetting with Boolean Operators

Boolean (TRUE or FALSE) outcomes can be used in combination with square brackets to subset

data.

Example 3.44.

Consider the dataframe used earlier (Exercise 3.19) to demonstrate logical commands.

dframe <- data.frame(
Age = c(18,22,23,21,22,19,18,18,19,21),
Sex = c("M","M","M","M","M","F","F","F","F","F"),
Weight_kg = c(63.5,77.1,86.1,81.6,70.3,49.8,54.4,59.0,65,69)
)

Here we extract Age outcomes less than or equal to 21.

ageTF <- dframe$Age <= 21
dframe$Age[ageTF]

[1] 18 21 19 18 18 19 21

We could also use this information to obtain entire rows of the dataframe.

dframe[ageTF,]

Age Sex Weight_kg
1 18 M 63.5
4 21 M 81.6
6 19 F 49.8
7 18 F 54.4
8 18 F 59.0
9 19 F 65.0
10 21 F 69.0

�

3.4.3 When Subset Is Larger Than Underlying Data

R allows one to make a data subset larger than underlying data itself, although this results in

the generation of filler NAs.

Example 3.45.

Consider the following example:

x <- c(-2, 3, 4, 6, 45)

The atomic vector x has length five. If I ask for a subset of length seven, I get:
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x[1:7]

[1] -2 3 4 6 45 NA NA

�

3.4.4 Subsetting with upper.tri(), lower.tri(), and diag()

We can use square brackets alongside the functions upper.tri(), lower.tri(), and diag()
to examine the upper triangle, lower triangle, and diagonal parts of a matrix, respectively.

Example 3.46.

For example:

mat <- matrix(ncol = 3, nrow = 3, data = c(1, 2, 3, 2, 4, 3, 5, 1, 4))
mat

[,1] [,2] [,3]
[1,] 1 2 5
[2,] 2 4 1
[3,] 3 3 4

mat[upper.tri(mat)]

[1] 2 5 1

mat[lower.tri(mat)]

[1] 2 3 3

diag(mat)

[1] 1 4 4

Note that upper.tri() and lower.tri() are used identify the appropriate triangle in the

object mat. Subsetting is then accomplished using square brackets.

�

3.5 Object Adresses

This section and the next concern important but rather advanced explorations of memory

addresses and memory usage of R data storage objects.

In programming, a pointer is a variable used to store the memory address of another variable

as its value. All R objects will have pointers, although the addresses themselves are temporary,
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and will change every time R is started, and memory is reallocated. Object pointer addresses

can be identified using the function obj_address() from the R package rlang (Henry and

Wickham, 2025). See Section 3.7 for a formal introduction to R packages.

# install.packages("rlang") installs rlang
library(rlang) # loads rlang

x <- c(1, 2, 3)
obj_address(x)

[1] "0x0000012db4cabc28"

Example 3.47.

The function sxp() from the R package lobstr (Wickham, 2022), will list both the address and

the underlying C-codified typedef SEXP (refer to Section 2.3.6) of an object.

# install.packages("lobstr") installs lobstr
library(lobstr) # loads lobstr
sxp(x)

[1:0x12db4cabc28] <REALSXP[3]> (named:4)

The double precision numeric vector x is underlain by the SEXP type REALSXP.

A dataframe or listwill each have its own address. However, these data containers will also

have pointers for each of their nested canonical elements (column vectors for dataframes and

list components for lists).

�

Example 3.48.

Consider the objects df and ldata below.

df <- data.frame(numeric = c(1, 2, 3), non.numeric = c("a", "b", "c"))
ldata <- list(first = c(1, 2, 3), second = "this.is.a.list")

We have the conceptual address structure shown in Fig 3.2.
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Figure 3.2: The conceptual address structure of a list, ldata and a dataframe, df. Figure
follows (Wickham, 2019).

The actualR address structure ofdf andldata canbe shownwith the functionlobstr::ref().

ref(df)

� [1:0x12db9b62bc8] <df[,2]>
├─numeric = [2:0x12db462be58] <dbl>
└─non.numeric = [3:0x12db462bea8] <chr>

ref(ldata)

� [1:0x12db9aaad08] <named list>
├─first = [2:0x12db456a098] <dbl>
└─second = [3:0x12db5436fc8] <chr>

�

3.5.1 Copy-on-Modify

In managing object addresses, R generally uses a method called copy-on-modify11 to preserve

shared address structures of objects (Wickham, 2019). Copy-on-modify semantics dramatically

increase computational efficiency and reduce object memory usage.

Example 3.49.

For example, if I create a copy of an object, then both the copy and the original object will point

to the same address(es) and those address(es) stored values.

11Ross Ihaka, in an R-help response in 2000 referred to this as “copy on modify (if necessary)”.

https://stat.ethz.ch/pipermail/r-help/2000-February/009952.html


94 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

ldata.copy <- ldata
obj_address(ldata.copy) == obj_address(ldata)

[1] TRUE

That is, we have the framework shown in Fig 3.3.

Figure 3.3: The conceptual address structure of a list, and its copy. Figure follows (Wickham,

2019).

The phrase “copy-on-modify” comes from the fact that even though the code ldata.copy <-
ldata indicates that a copy of ldata is being made, no copying is actually being done because

ldata.copy and ldata both point to a single value at the same address12. Copying will only

occur if I indicate that one or both of the objects will bemodified. For instance, below I indicate

that a logical vector named logical should be added to ldata.copy:

ldata.copy$logical <- c(TRUE, FALSE, TRUE)

Then ldata.copywill be copied (from ldata) and given a new overall address:

obj_address(ldata.copy) == obj_address(ldata)

[1] FALSE

Additionally, to optimize efficiency, unmodified elements of ldata.copy (i.e., first and

second) will still point to the same shared addresses and values defined originally in ldata.

ref(ldata, ldata.copy)

12For additional information see this exchange on stack overflow.

https://stackoverflow.com/questions/15759117/what-exactly-is-copy-on-modify-semantics-in-r-and-where-is-the-canonical-source
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� [1:0x12db9aaad08] <named list>
├─first = [2:0x12db456a098] <dbl>
└─second = [3:0x12db5436fc8] <chr>

� [4:0x12db3028d28] <named list>
├─first = [2:0x12db456a098]
├─second = [3:0x12db5436fc8]
└─logical = [5:0x12db7b0f148] <lgl>

That is, we have the framework shown in Fig 3.4.

Figure 3.4: An illustration of copy-on-modify. Figure follows (Wickham, 2019).

�

Example 3.50.

Copy-on-modify semantics will also be used for most other R objects. For instance,

df.copy <- df
df.copy$logical <- c(TRUE, FALSE, TRUE)
ref(df, df.copy)

� [1:0x12db9b62bc8] <df[,2]>
├─numeric = [2:0x12db462be58] <dbl>
└─non.numeric = [3:0x12db462bea8] <chr>

� [4:0x12db245c728] <df[,3]>
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├─numeric = [2:0x12db462be58]
├─non.numeric = [3:0x12db462bea8]
└─logical = [5:0x12db67385c8] <lgl>

�

It is worth noting that copy-on-modify procedures are followed in a dataframe (as shown

above) only if modifications are made to columns (e.g., values are transformed) or to the

column structure (columns are added or deleted). If a row is modified, then every column will

be modified, which means that every column must be copied and given a new address.

Despite its benefits, copy-on-modify is not widely used by other languages. For instance,

modification of an array in the Python language (Section 9.5) will inefficiently create an

entirely new array, while destroying the old array (Pine, 2019; Haddock and Dunn, 2011).

3.5.2 Names and Symbols

An object name appears to be inextricably tied to its content. However, to access the content

of an object x, one must go to the pointer address associated with the name x in computer

memory. In R, the terms and name and symbol are analogous13, and reveal historic ties to S

(which uses name) and Lisp (which uses symbol). We can disentangle names/symbols from

their associated content using the functions expression() and particularly rlang::expr().

Recall (Section 2.9.5) that objects of class expression can be evaluated using the function

eval().

a <- 4
x <- expr(a)
eval(x)

[1] 4

Example 3.51.

Here x is actually defined to be the symbol name a.

x <- expr(a)
is.symbol(x)

[1] TRUE

is.name(x)

[1] TRUE

The symbols/names in an expression can be identified using all.names().

13For example, the functions is.name() and is.symbol() are identical in base R.
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all.names(x)

[1] "a"

Values can be substituted for symbols using the function substitute().

substitute(expression(a + b), list(a = 1))

expression(1 + b)

�

The name of function argument is a special type of symbol called a promise. A promise is a

placeholder that delays the evaluation of a function argument until it is actually required by

the function itself (see Section 8.8.2).

3.6 Memory and Objects

The memory structure of R objects can be complex, even for the simple examples used here.

This is because object canonical components and attributes will also require pointers and

SEXP types.

Example 3.52. Continuing Example 3.47 we have:

sxp(df)

[1:0x12db9b62bc8] <VECSXP[2]> (object named:9)
numeric [2:0x12db462be58] <REALSXP[3]> (named:16)
non.numeric [3:0x12db462bea8] <STRSXP[3]> (named:16)
_attrib [4:0x12db559f348] <LISTSXP> (named:1)

names [5:0x12db9b62cc8] <STRSXP[2]> (named:65535)
class [6:0x12da5fc3a48] <STRSXP[1]> (named:65535)
row.names [7:0x12db53a7620] <INTSXP[2]> (named:65535)

sxp(ldata)

[1:0x12db9aaad08] <VECSXP[2]> (named:10)
first [2:0x12db456a098] <REALSXP[3]> (named:10)
second [3:0x12db5436fc8] <STRSXP[1]> (named:13)
_attrib [4:0x12db55a8f20] <LISTSXP> (named:1)

names [5:0x12db9aaad48] <STRSXP[2]> (named:65535)

Both df and ldata use the overarching SEXP type VECSXP (even though an R dataframe is a
list of vectors (Section 3.1.4), and not strictly a vector (but see Wickham (2019))). REALSXP
and STRSXP are required for numerical and string components, respectively, of both df and
ldata. Note that the dataframe object has additional attributes, including a row.names slot.
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�

The size of objects in the global environment can be checked using the function

lobstr::obj_size().

Example 3.53.

Any vector of zero length will require 48 bytes of memory (see Wickham (2019).

obj_size(numeric())

48 B

obj_size(logical())

48 B

obj_size(character())

48 B

�

Example 3.54.

Eighty bytes (640 bits; Ch 12) are required to store a three element numeric vector in the

current 64 bit version of R.

x <- c(1, 2, 3)
obj_size(x)

80 B

�

R lists and dataframes are very efficient storage entities because their canonical components

are generally constrained to only pointers (Section 3.5).

Example 3.55.

Slightly more memory is required for storing the vector x from Example 3.54, in a list.

obj_size(list(x))

136 B

Dataframes are less efficient than lists, particularly for small datasets.

obj_size(data.frame(x))

760 B



3.6. MEMORY AND OBJECTS 99

This is because the SEXP structure of a dataframe is more complex than a list (Example 3.52).

�

Example 3.56.

Here I create an object y that supposedly contains four copies of x.

y <- list(x, x, x, x)

However y only requires 80 more bytes than x (while x itself requires 80 B).

obj_size(x)

80 B

obj_size(y)

160 B

A dataframe version of y is again less efficient than a list version, although this difference

becomes negligible as the the number of copies of x increases (Fig 3.5).
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Figure 3.5: Comparison of list and dataframememory useage given copies of x. Code for
figure is at https://amalgamofr.org/listVSdf.R.

�

3.6.1 Global Character Pool

Rmemory storage for character string objects is optimized in an unexpected way. Instead of

creating addresses for user strings on the fly, R locates addresses for single immutable string

values stored within a global string pool. This approach has also been called string interning

(Wikipedia, 2025c).

Example 3.57.

Thus, for the string below, we have the conceptual framework shown in Fig 3.6.

https://amalgamofr.org/listVSdf.R
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x <- c("a", "zyx", "PhD")

Figure 3.6: R character strings and the global string pool. Figure follows (Wickham, 2019).

The actual pointers to the strings in the global string pool can be identified with:

lobstr:ref().

ref(x, character = TRUE)

� [1:0x12db023f2c8] <chr>
├─[2:0x12d8c0110e0] <string: "a">
├─[3:0x12dbc8300e8] <string: "zyx">
└─[4:0x12dbc830040] <string: "PhD">

�

Sring interning dramatically improves computational efficiency and decreases memory usage,

because string values only need to be stored once. String pools originated with Lisp, and are

also used by the Java language (Wikipedia, 2025c).

3.7 Packages

An R package contains a set of related functions, documentation, (often) data files, and other

miscellany that have been bundled together. The so-calledR-distribution packages are included
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with a conventional download of R (Table 3.3). These packages are directly controlled by the

R core development team and are extremely well-vetted and trustworthy.

Packages in Table 3.4 constitute the R-recommended packages. These are not necessarily

controlled by the R core development team, but are also extremely useful, well-tested, and

stable, and like the R-distribution packages, are included in conventional downloads of R.

Aside from distribution and recommended packages, there are a large number of contributed

packages that have been created by R-users (> 20000 as of 9/12/2023). Table 3.5 lists a few.

3.7.1 Package Installation

Contributed packages can be installed from CRAN (the Comprehensive R Archive Network).

To do this, one can go to Packages>Install package(s) on the R-GUI toolbar (non-Unix only),

and choose a nearby CRAN mirror site to minimize download time. Once a mirror site is

selected, the packages available at the site will appear. One can simply click on the desired

packages to install them. Packages can also be downloaded directly from the command line

using install.packages("package name"). Thus, to install the package vegan (see Table

3.5), I would simply type:

install.packages("vegan")

If local web access is not available, packages can be installed as compressed (.zip, .tar) files

which can then be placed manually on a workstation by inserting the package files into the

library folder within the top level R directory, or into a path-defined R library folder in a user

directory.

The installation pathway for contributed packages can be identified using .libPath().

.libPaths()

[1] "C:/Users/ahoken/AppData/Local/R/win-library/4.5"
[2] "C:/Program Files/R/R-4.5.1/library"

This process can be facilitated in RStudio via applications in its Plots and Miscellany panel

(see Section 2.10).

Several functions exist for updating packages and for comparing currently installed versions of

packages to their latest versions at CRAN or other repositories. The function old.packages()
prints a list of currently installed packages that have a (suitable) later version. Here are a few

of the packages I have installed that have later versions.

head(old.packages(repos = "https://cloud.r-project.org"))[,c(1,3,4,5)]

Package Installed Built ReposVer
adehabitatLT "adehabitatLT" "0.3.28" "4.5.0" "0.3.29"
animation "animation" "2.7" "4.5.1" "2.8"
arcgisgeocode "arcgisgeocode" "0.2.3" "4.5.0" "0.3.0"
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batchtools "batchtools" "0.9.17" "4.5.0" "0.9.18"
bookdown "bookdown" "0.43" "4.5.1" "0.44"
broom "broom" "1.0.8" "4.5.0" "1.0.10"

The function update.packages()will identify, and offer to download and install later versions

of installed packages.

3.7.2 Loading Packages

Once a contributed package is installed on a computer it never needs to be re-installed. How-

ever, for use in an R session, recommended packages, and installed contributed packages will

need to be loaded (although see Section 2.6.1 concerning customized R startup). This can

be done using the library() function, or point and click tools if one is using RStudio. For

example, to load the installed contributed vegan package, I would type:

library(vegan)

Loading required package: permute

Loading required package: lattice

We see that two other packages are loaded when we load vegan: permute and lattice.

To detach vegan from the global environment, I would type:

detach(package:vegan)

We can check if a specific package is loaded using the function .packages(). Most of the R

distribution packages are loaded (by default) upon opening a session. Exceptions include

compiler, grid, parallel, splines, stats4, and tools.

bpack <- c("base", "compiler", "datasets", "grDevices", "graphics",
"grid", "methods", "parallel", "splines", "stats", "stats4",
"tcltk", "tools", "translations", "utils")

sapply(bpack, function(x) (x %in% .packages()))

base compiler datasets grDevices graphics
TRUE FALSE TRUE TRUE TRUE
grid methods parallel splines stats

FALSE TRUE FALSE FALSE TRUE
stats4 tcltk tools translations utils
FALSE TRUE FALSE FALSE TRUE

The function sapply(), which allows application of a function to each element in a vector or

list, is formally introduced in Section 4.1.1.

The package vegan is no longer loaded because of the application of detach(package:vegan).
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"vegan" %in% .packages()

[1] FALSE

We can get a summary of information about a session, including details about the version of

R being used, the underlying computer platform, and the loaded packages with the function

sessionInfo().

si <- sessionInfo()
si$R.version$version.string

[1] "R version 4.5.1 (2025-06-13 ucrt)"

si$running

[1] "Windows 11 x64 (build 26100)"

head(names(si$loadedOnly))

[1] "gtable" "xfun" "ggplot2" "vctrs" "tools" "generics"

This information is important to include when reporting issues to package maintainers.

Once a package is installed its functions can generally be accessed using the double colon

metacharacter, ::, even if the package is not actually loaded. For instance, the function

vegan::diversity()will allow access to the function diversity() from vegan, even when

vegan is not loaded.

head(vegan::diversity)[1:2]

[1] function (x, index = "shannon", groups, equalize.groups = FALSE,
[2] MARGIN = 1, base = exp(1))

The triple colonmetacharacter, :::, can be used to access internal package functions. These

functions, however, are generally kept internal for good reason, and probably shouldn’t be

used outside of the context of the rest of the package.

3.7.3 Other Package Repositories

Aside from CRAN, there are currently three other extensive repositories of R packages. First,

the Bioconductor project (http://www.bioconductor.org/packages/release/Software/html)

contains a large number of packages for the analysis of data from current and emerging

biological assays. Bioconductor packages are generally not stored at CRAN. Packages can be

downloaded from Bioconductor using an R script called biocLite. To access the script and
download the package RCytoscape from Biocondctor, I could type:

http://www.bioconductor.org/packages/release/Software/html
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source("http://bioconductor.org/biocLite.R")
biocLite("RCytoscape")

Second, the Posit Package Manager (formerly the RStudio Package Manager) provides a repos-

itory interface for R packages from CRAN, Bioconductor, and packages for the Python system

(see Section 9.5). Third, R-forge (http://r-forge.r-project.org/) contains releases of packages

that have not yet been implemented into CRAN, and other miscellaneous code. Bioconductor,

Posit, and R-forge can be specified as repositories from Packages>Select Repositories in
the R-GUI (non-Unix only). Other informal R package and code repositories currently include

GitHub and Zenodo.

http://r-forge.r-project.org/
https://github.com/
https://zenodo.org/
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Table 3.3: The R-distribution packages.

Package Maintainer Topic(s) addressed by package Author/Citation

base R Core Team Base R functions R Core Team (2023)

compiler R Core Team R byte code compiler R Core Team (2023)

datasets R Core Team Base R datasets R Core Team (2023)

grDevices R Core Team Devices for base and grid graphics R Core Team (2023)

graphics R Core Team R functions for base graphics R Core Team (2023)

grid R Core Team Grid graphics layout capabilities R Core Team (2023)

methods R Core Team Formal methods and classes for R objects R Core Team (2023)

parallel R Core Team Support for parallel computation R Core Team (2023)

splines R Core Team Regression spline functions and classes R Core Team (2023)

stats R Core Team R statistical functions R Core Team (2023)

stats4 R Core Team Statistical functions with S4 classes R Core Team (2023)

tcltk R Core Team Language bindings to Tcl/Tk R Core Team (2023)

tools R Core Team Tools forpackage development/administration R Core Team (2023)

utils R Core Team R utility functions R Core Team (2023)
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Table 3.4: The R-recommended packages.

Package Maintainer Topic(s) addressed by package Author/Citation

KernSmooth B. Ripley Kernel smoothing Wand (2023)

MASS B. Ripley Important statistical methods Venables and Ripley (2002)

Matrix M. Maechler Classes and methods for matrices Bates et al. (2023)

boot B. Ripley Bootstrapping Canty and Ripley (2022)

class B. Ripley Classification Venables and Ripley (2002)

cluster M. Maechler Cluster analysis Maechler et al. (2022)

codetools S. Wood Code analysis tools Tierney (2023)

foreign R core team Data stored by non-R software R Core Team (2023)

lattice D. Sarkar Lattice graphics Sarkar (2008)

mgcv S. Wood Generalized Additive Models Wood (2011, 2017)

nlme R core team Linear and non-linear mixed effect models Pinheiro and Bates (2000)

nnet B. Ripley Feed-forward neural networks Venables and Ripley (2002)

rpart B. Ripley Partitioning and regression trees Venables and Ripley (2002)

spatial B. Ripley Kriging and point pattern analysis Venables and Ripley (2002)

Table 3.5: Useful contributed R packages.

Package Maintainer Topic(s) addressed by package Author/Citation

asbio K. Aho Stats pedagogy and applied stats Aho (2023)

car J. Fox General linear models Fox and Weisberg (2019)

coin T. Hothorn Non-parametric analysis Hothorn et al. (2006, 2008)

ggplot2 H. Wickham Tidyverse grid graphics Wickham (2016)

lme4 B. Bolker Linear mixed-effects models Bates et al. (2015)

plotrix J. Lemonetal. Helpful graphical ideas Lemon (2006)

spdep R. Bivand Spatial analysis Bivand et al. (2013); Pebesma and Bivand (2023)

tidyverse H. Wickham Data science under the tidyverse Wickham et al. (2019)

vegan J. Oksanen Multivariate and ecological analysis Oksanen et al. (2022)
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3.7.4 Accessing Package Information

Important information concerning apackage canbeobtained from thepackageDescription()
family of functions. Here is the version of the R contributed package asbio on my work station:

packageVersion("asbio")

[1] '1.11'

Here is the version of R used to build the installed version of asbio, and the package’s build

date:

packageDescription("asbio", fields="Built")

[1] "R 4.5.0; ; 2025-05-14 01:46:34 UTC; windows"

3.7.5 Accessing Datasets in R-packages

The command:

data()

results in a listing of a datasets available in a session from within R packages loaded in a

particular R session. Whereas the code:

data(package = .packages(all.available = TRUE))

results in a listing of a datasets available in a session from within installed R packages.

If one is interested in datasets from a particular package, for instance the package datasets,

one could type:

data(package = "datasets")

All datasets in the datasets package are read into an R-session automatically, upon loading of

the package. This is because the package’s dataframes were defined to be lazy loaded when

the package was built (Ch 10). To access a dataset from a package that do not specify lazy

loading, we must use the data() function with the data object name as an argument, after

loading the data object’s package environment.

Example 3.58.

Here I load the asbio package to access its dataframe K, which contains soil potassiummea-

surements for “identical” soils samples, from eight soil testing laboratories.

library(asbio)
data(K)
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The data are now contained in a dataframe (called K) that we can manipulate and summarize.

summary(K)

K lab
Min. :187 B : 9
1st Qu.:284 D : 9
Median :314 E : 9
Mean :308 F : 9
3rd Qu.:341 G : 9
Max. :413 H : 9

(Other):18

The function summary() provides the mean and a conventional five number summary (min-

imum, 1st quartile, median, 3rd quartile, maximum) of quantitative variables (i.e., K) and a

count of the number of observations in each level of a categorical variable (i.e., lab).

�

Example 3.59.

The Loblolly data in the datasets package does not require use of data() because of its use of
lazy loading. Recall that we can access the first few rows from a dataframe using the function

head():

head(Loblolly, 5)

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301

Here we apply the class() function to Loblolly. The result is surprisingly complex.

class(Loblolly)

[1] "nfnGroupedData" "nfGroupedData" "groupedData" "data.frame"

In addition to the dataframe class, there are three other classes (nfnGroupedData,
nfGroupedData, groupedData). These allow recognition of the nested structure of the age
and Seed variables (defined to height is a function of age in Seed), and facilitates the analysis

of the data using mixed effect model algorithms in the package nlme (see ?Loblolly).

�
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R provides a spreadsheet-style data editor if one types fix(x), when x is a dataframe or a

two dimensional array. For instance, the command fix(Loblolly)will open the Loblolly
pine dataframe in the data editor (Figure 3.7). When x is a function or character string, then

a script editor is opened containing x. The data editor has limited flexibility compared to

software whose main interface is a spreadsheet, and whose primary purpose is data entry

and manipulation, e.g., Microsoft Excelr. Changes made to an object using fix() will only

be maintained for the current work session. They will not permanently alter objects brought

in remotely to a session. The function View(x) (RStudio only) will provide a non-editable

spreadsheet representation of a dataframe or numeric array.

Figure 3.7: The default R spreadsheet editor.

3.8 Facilitating Command Line Data Entry

Command line data entry is made easier with with several R functions. The function scan()
can speed up data entry because a prompt is given for each data point14, and separators are

created by the function itself. Data entries can be designated using the space bar or line breaks.

The scan() function will be terminated by a additional blank line or an end of file (EOF) signal.

This will be Ctrl + D in Unix-alike operating systems and Windows.

Below I enter the numbers 1, 2, and 3 as datapoints, separated by spaces, and end data entry

using an additional line break. The data are saved as the object a.

a <- scan()
1: 1 2 3
4:
Read 3 items

Sequences can be generated quickly in R using the : operator

14If one uses the default scan() argument: file = "".
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1:10

[1] 1 2 3 4 5 6 7 8 9 10

or the function seq(), which allows additional options:

seq(1, 10)

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, by = 2) # 1 to 10 by two

[1] 1 3 5 7 9

seq(1, 10, length = 4) # 1 to 10 in four evenly spaced points

[1] 1 4 7 10

Entries can be repeatedwith the function rep(). For example, to repeat the sequence 1 through

5, five times, I could type:

rep(c(1:5), 5)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Note that the first argument in rep(), defines the thing we want to repeat and the second

argument, 5, specifies the number of repetitions. I can use the argument each to repeat

individual elements a particular number of times.

rep(c(1:5), each = 2)

[1] 1 1 2 2 3 3 4 4 5 5

We can use seq() and rep() simultaneously to create complex sequences. For instance, to

repeat the sequence 1,3,5,7,9,11,13,15,17,19, three times, we could type:

rep(seq(1, 20, by = 2), 3)

[1] 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5
[24] 7 9 11 13 15 17 19

3.9 Importing Data Into R

While it is possible to enter data into R at the command line, this will normally be inadvisable

except for small datasets. In general it will be much easier to import data. R can read data from

many different kinds of formats including .txt, and .csv (comma separated) files, and files with

space, tab, and carriage return datum separators. Important R functions for importing data
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include read.table(), read.csv(), read.delim(), and scan(). The function load() can

be used to import data files in .rda data formats, or other R objects. Datasets read into Rwill

generally be of class dataframe (data storage mode list). ### Import Using read.table(),
read.csv(), and scan() {#rt} The read.table() function can import data organized under

a wide range of formats. It’s first three arguments are very important.

• file defines the name of the file and directory hierarchy which the data are to be read

from.

• header is a logical (TRUE or FALSE) value indicating whether file contains column

names as its first line.

• sep refers to the type of data separator used for columns. Comma separated files use

commas to separate columns. Thus, in this case sep = ",". Tab separators are specified
as "\t". Space separators are specified as spaces, specified as simply " ".

Other useful read.table() arguments include row.names, header, and na.strings. The
specification row.names = 1 indicates that the first column in the imported dataset contains

row names. The specification header = TRUE, the default setting, indicates that the first row
of data contains column names. The argument na.strings = "." indicates that missing

values in the imported dataset are designated with periods. By default na.strings = NA.

Example 3.60.

As an example of read.table() usage, assume that I want to import a .csv file called veg.csv
located in folder called veg_data, in my working directory. The first row of veg.csv contains
columnnames, while the first column contains rownames. Missing data in the file are indicated

with periods. I would type:

read.table("veg_data/veg.csv", sep = ",", header = TRUE, row.names
= 1, na.strings = ".")

As before, note that as a legacy of its development under Unix, R locates files in directories

using forward slashes (or doubled backslashes) rather than single Windows backslashes.

�

The read.csv() function assumes data are in a .csv format. Because the argument sep is

unnecessary, this results in a simpler code statement.

read.csv("veg_data\\veg.csv", header = TRUE, row.names
= 1, na.strings = ".")

The function scan() can read in data from an essentially unlimited number of formats, and

is extremely flexible with respect to character fields and storage modes of numeric data. In

addition to arguments used by read.table(), scan() has the arguments

• whatwhich describes the storage mode of data e.g., "logical", "integer", etc., or if
what is a list, components of variables including column names (see below), and
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• decwhich describes the decimal point character (European scientists and journals often

use commas).

Example 3.61.

Assume that veg_data/veg.csv has a column of species names, called species, that will

serve as the dataframe’s row names, and 3 columns of numeric data, named site1, site2,
and site3. We would read the data in with scan() using:

scan("veg.csv", what = list(species = "", site1 = 0, site2 = 0, site3 = 0),
na.strings = ".")

The empty string species = "" in the list comprising the argument what, indicates that
species contains character data. Stating that the remaining variables equal 0, or any other

number, indicates that they contain numeric data.

�

The easiest way to import data, if the directory structure is unknown or complex, is to use

read.csv() or read.table(), with the file.choose() function as the file argument.

Example 3.62.

For instance, by typing:

df <- read.csv(file.choose())

We can now browse for a .csv files to open that will, following import, be a dataframe with the

name df. Other arguments (e.g., header, row.names) will need to be used, when appropriate,

to import the file correctly.

�

Occasionally strange characters, e.g., ï.., may appear in front of the first header name when

reading in files created in Excelr or other Microsoft applications. This is due to the addition of

Byte Order Mark (BOM) characters which indicate, among other things, the Unicode character

encoding of the file. These characters can generally be eliminated by using the argument

fileEncoding="UTF-8-BOM" in read.table(), read.csv(), or scan().

3.9.1 Import Using RStudio

RStudio allows direct menu-driven import of file types from a number of spreadsheet and

statistical programs including Excelr, SPSSr, SASr, and Statar by going to File>Import

Dataset. Certain restrictions may exist, however, that do not occur for read.table() and

read.csv() (Table 3.6).
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Table 3.6: Data import options in RStudio by data storage file type.

CSV or Text Excelr SASr, SPSSr, Statar

Import from file system or URL X X X

Change column data types X X

Skip or include columns X X X

Rename dataset X X

Skip the first n rows X X

Use header row for column names X

Trim spaces in names X

Change column delimiter X

Encodingselection X

Select quote identifiers X

Select escape identifiers X

Select comment identifiers X

Select NA identifiers X X

Specify model file X

3.9.2 Final Considerations

It is generally recommended that datasets imported and used by R be smaller than 25% of the

physical memory of the computer. For instance, they should use less than 8 GB on a computer

with 32 GB of RAM.

R can handle extremely large datasets, i.e. > 10 GB, and > 1.2 × 1010 rows. In this case,

however, specific R packages can be used to aid in efficient data handling. Parallel computing

and workstation modifications may allow even greater efficiency. The actual upper physical

limit for an R dataframe is 2 × 1031 − 1 elements. Note that this exceeds Excelr by 31 orders

of magnitude (Excelr 2019 worksheets can handle approximately 1.7 × 1010 elements).

3.10 Databases

Many examples of biological data (e.g., genomes, spatial data) are extremely large and/or

require multiple datasets for meaningful analyses. In this situation, storing and accessing

data using a database may be extremely helpful. Databases can reside locally (on a user’s

computer) but more often are stored remotely and are accessed via internet links. This

allows simultaneous access for multiple users and storage of extremely large data objects.

Modern databases are often structured so that data points in distinct tables can be queried,

assembled, and analyzed jointly. Two common formats are Relational DataBases (RDB) and

Resource Description Framework (RDF) stores (Sima et al., 2019). R can often interface with

these database systems using the Structured Query Language (SQL), often pronunced sequel

(Chambers, 2008; Adler, 2010). Due to the need for additional background –provided in

intervening chapters– this topic is formally introduced in Section 9.4.
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Exercises

1. Create the following data structures:

(a) An atomic vector object with the numeric entries 1,2,3,4.
(b) A matrix object with two rows and two columns with the numeric entries 1,2,3,4.
(c) A dataframe object with two columns; one column containing the numeric entries

1,2,3,4, and one column containing the character entries "a","b","c","d".
(d) A list containing the objects created in (b) and (c).

(e) Using class(), identify the class and the data storage mode for the objects created

in problems a-d. Discuss the characteristics of the identified classes.

2. Assume that you have developed an R algorithm that saves hourly stream temperature

sensor outputs greater than 20o from each day as separate dataframes and places them

into a list container, because some days may have several points exceeding the threshold

and some days may have none. Complete the following based on the list hi.temps given
below:

(a) Combine the dataframes in hi.temps into a single dataframe using do.call().
(b) Create a dataframe consisting of 10 sets of repeated measures from the dataframe

hi.temps$day2 using do.call().

hi.temps <- list(day1 = data.frame(time = c(), temp = c()),
day2 = data.frame(time = c(15,16),

temp = c(21.1,22.2)),
day3 = data.frame(time = c(14,15,16),

temp = c(21.3,20.2,21.5)))

3. Given the dataframe boo below, provide solutions to the following questions:

(a) Identify heights that are less than or equal to 80 inches.

(b) Identify heights that are more than 80 inches.

(c) Identify females (i.e. F) greater than or equal to 59 inches but less 63 inches.

(d) Subset rows of boo to only contain only data for males (i.e. M) greater than or equal

to 75 inches tall.

(e) Find the mean weight of males who are 75 or 76 inches tall.

(f) Use ifelse() or if() to classify heights equal to 60 inches as "small", and heights
greater than or equal to 60 inches as "tall".

boo <- data.frame(height.in = c(70, 76, 72, 73, 81, 66, 69, 75,
80, 81, 60, 64, 59, 61, 66, 63,
59, 58, 67, 59),

weight.lbs = c(160, 185, 180, 186, 200, 156,
163, 178, 186, 189, 140, 156,
136, 141, 158, 154, 135, 120,
145, 117),

sex = c(rep("M", 10), rep("F", 10)))
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4. Create x <- NA, y <- NaN, and z <- NULL.
(a) Test for the class of x using x == NA and is.na(x) and discuss the results.

(b) Test for the class of y using y == NaN and is.nan(y) and discuss the results.

(c) Test for the class of z using z == NULL and is.null(z) and discuss the results.

(d) Discuss NA, NaN, and NULL designations what are these classes used for and what

do they represent?

5. For the following questions, use data from Table 3.7 below.

(a) Write the data into an R dataframe called plant. Use the functions seq() and

rep() to help.
(b) Use names() to find the names of the variables.

(c) Access the first row of data using square brackets.

(d) Access the third column of data using square brackets.

(e) Access rows three through five using square brackets.

(f) Access all rows except rows three, five and seven using square brackets.

(g) Access the fourth element from the third column using square brackets.

(h) Apply na.omit() to the dataframe and discuss the consequences.

(i) Create a copy of plant called plant2. Using square brackets, replace the 7th item

in the 2nd column in plant2, an NA value, with the value 12.1.
(j) Switch the locations of columns two and three in plant2 using square brackets.
(k) Export the plant2 dataframe to your working directory.

(l) Convert the plant2 dataframe into a matrix using the function as.matrix. Discuss
the consequences.

6. Let:

𝐴 = [2 −3
1 0 ] and 𝑏 = [15]

Perform the following operations using R:

(a) 𝐴 ⊗ 𝐴
(b) 𝐴 ⊙ 𝐴
(c) 𝐴𝑏
(d) 𝑏𝐴. Was there an issue? Why?

(e) 𝑑𝑒𝑡(𝐴)
(f) 𝐴−1

(g) 𝐴′

7. We can solve systems of linear equations using matrix algebra under the framework

𝐴𝑥 = 𝑏, and (thus) 𝐴−1𝑏 = 𝑥. In this notation 𝐴 contains the coefficients from a

series of linear equations (by row), 𝑏 is a vector of solutions given in the individuals

equations, and 𝑥 is a vector of solutions sought in the system of models. Thus, for the

linear equations:

𝑥 + 𝑦 = 2
−𝑥 + 3𝑦 = 4
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Table 3.7: Data for Question 5.

Plant height (dm) Soil N (%) Water index (1-10) Management type

22.3 12 1 A

21 12.5 2 A

24.7 14.3 3 B

25 14.2 4 B

26.3 15 5 C

22 14 6 C

31 7 D

32 15 8 D

34 13.3 9 E

42 15.2 10 E

28.9 13.6 1 A

33.3 14.7 2 A

35.2 14.3 3 B

36.7 16.1 4 B

34.4 15.8 5 C

33.2 15.3 6 C

35 14 7 D

41 14.1 8 D

43 16.3 9 E

44 16.5 10 E

we have:

𝐴 = [ 1 1
−1 3] ,𝑥 = [𝑥𝑦] , and 𝑏 = [24] .

Thus, we have

𝐴−1𝑏 = 𝑥 = [1/23/2] .

Given this framework, solve the system of equations below with linear algebra

using R.

3𝑥 + 2𝑦 − 𝑧 = 1
2𝑥 − 2𝑦 + 4𝑧 = −2

−𝑥 + 0.5𝑦 − 𝑧 = 0

8. Complete the following exercises concerning the R contributed package asbio:
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(a) Install15 and load the package asbio for the current work session.

(b) Identify

(c) Access the help file for bplot() (a function in asbio).

(d) Load the dataset fly.sex from asbio.

(e) Obtain documentation for the dataset fly.sex and describe the dataset variables.

(f) Access the column longevity in fly.sex using the function with().

9. Create .csv and .txt datasets, place them in your working directory, and read them into R.

10. How does R uses symbols? Create a symbol and explain its characteristics.

11. Create the lists list1 <- list(a = c(1, 2, 3), b = c("a", "b")); list2 <-
list1.
(a) Show that the lists and contents of these lists have the same addresses using

lobstr::rep().
(b) Modify list2 by running list2$c <- "stuff". What happened to the addresses

of list1 and list2 and their contents? Use the term copy-on-modify correctly in

your answer.

12. Create an object containing a 1000 random outcomes, x, and a list, listob, containing x,
using x <- runif(10^3); listob <- list(x).
(a) Find the size of x and listob using lobstr::obj_size().
(b) Create listob2 <- list(x, x, x, x). Explain why the memory size of listob

and lostob2 are so similar despite the fact that lostob contains one copy of x, and
lostob2 contains four.

13. Define the term global character pool.

15Installation of packages while knitting of RMarkdown or Sweave R code chunks is not allowed. Instead, one

should install packages from the console. Required packages can (and should) be loaded while knitting once they

are installed.



Chapter 4

Basic Data Management

“I think, therefore I R.”

-William B. King, Psychologist and R enthusiast

An important characteristic ofR is its capacity to efficientlymanage and analyze large, complex,

datasets. In this chapter I list a few functions and approaches useful for data management in

base R. Data management considerations for the tidyverse are given in Chapter 5.

4.1 Operations on Arrays, Lists and Vectors

Operators can be applied individually to every row or column of an array, or every component

of a list or atomic vector using a number of time saving methods.

4.1.1 The apply Family of Functions

4.1.1.1 apply()

Operations can be performed quickly on rows and columns of two dimensional arrays with

the function apply(). The function requires three arguments.

• The first argument, X, specifies an array to be analyzed.

• The second argument, MARGIN, connotes whether rows or columns are to be analyzed.

MARGIN = 1 indicates rows, MARGIN = 2 indicates columns, whereas MARGIN = c(1,
2) indicates rows and columns.

• The third argument, FUN, defines a function to be applied to the margins of the object in

the first argument.

Example 4.1.

Consider the asbio::bats dataset which contains forearm length data, in millimeters, for

northern myotis bats (Myotis septentrionalis), along with corresponding bat ages in in days.

119



120 CHAPTER 4. BASIC DATA MANAGEMENT

library(asbio)
data(bats)
head(bats)

days forearm.length
1 1 10.5
2 1 11.0
3 1 12.3
4 1 13.7
5 1 14.2
6 1 14.8

Here we obtain minimum values for the days and forearm.length columns.

apply(bats, 2, min)

days forearm.length
1.0 10.5

It is straightforward to change the third argument in apply() to obtain different summaries,

like the mean.

apply(bats, 2, mean)

days forearm.length
13.579 23.603

or the standard deviation

apply(bats, 2, sd)

days forearm.length
12.4610 8.4347

Several summary statistical functions exist for numerical arrays that can be used in some

instances in the place of apply(). These include rowMeans() and colMeans()which give the

sample means of specified rows and columns, respectively, and rowSums() and colSums()
which give the sums of specified rows and columns, respectively. For instance:

colMeans(bats)

days forearm.length
13.579 23.603

�
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4.1.1.2 lapply()

The function lapply() allows one to sweep functions through list components. It has two

main arguments:

• The first argument, X, specifies a list to be analyzed.
• The second argument, FUN, defines a function to be applied to each element in X.

Example 4.2.

Consider the following simple list, whose three components have different lengths.

x <- list(a = 1:8, norm.obs = rnorm(10),
logic = c(TRUE, TRUE, FALSE, FALSE))

x

$a
[1] 1 2 3 4 5 6 7 8

$norm.obs
[1] -1.28372 -0.75693 0.59059 -1.59485 -0.88787 -0.25026 1.05575
[8] -0.43196 2.05223 0.64020

$logic
[1] TRUE TRUE FALSE FALSE

Here we sweep the function mean() through the list:

lapply(x, mean)

$a
[1] 4.5

$norm.obs
[1] -0.086682

$logic
[1] 0.5

Note the Boolean outcomes in logic have been coerced to numeric outcomes. Specifically,

TRUE = 1 and FALSE = 0. Here are the 1st, 2nd (median), and 3rd quartiles of x:

lapply(x, quantile, probs = 1:3/4)

$a
25% 50% 75%
2.75 4.50 6.25
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$norm.obs
25% 50% 75%

-0.85514 -0.34111 0.62780

$logic
25% 50% 75%
0.0 0.5 1.0

�

4.1.1.3 sapply()

The function sapply() is a user friendly wrapper for lapply() that can return a vector or

array instead of a list.

sapply(x, quantile, probs = 1:3/4)

a norm.obs logic
25% 2.75 -0.85514 0.0
50% 4.50 -0.34111 0.5
75% 6.25 0.62780 1.0

4.1.1.4 tapply()

The tapply() function allows summarization of a one dimensional array (e.g., a column or

row from a matrix) with respect to levels in a categorical variable. The function requires three

arguments.

• The first argument, X, defines a one dimensional array to be analyzed.

• The second argument, INDEX should provide a list of one or more factors (see example

below) with the same length as X.
• The third argument, FUN, is used to specify a function to be applied to X for each level in

INDEX.

Example 4.3.

Consider the dataset asbio::heart, which documents pulse rates for twenty four subjects

at four time periods following administration of a experimental treatment. These were two

active heart medications and a control. Here are average heart rates for the treatments.

data(heart)
with(heart, tapply(rate, drug, mean))

AX23 BWW9 Ctrl
76.281 81.031 71.906
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Here are the mean heart rates for treatments, for each time frame. Note that the second

argument is defined as a list with two components, each of which can be coerced to be a factor.

with(heart, tapply(rate, list(drug = drug, time = time), mean))

time
drug t1 t2 t3 t4

AX23 70.50 80.500 81.000 73.125
BWW9 81.75 84.000 78.625 79.750
Ctrl 72.75 72.375 71.500 71.000

�

The function aggregate() can be considered a more sophisticated extension of tapply(). It
allows objects under consideration to be expressed as functions of explanatory factors, and

contains additional arguments for data specification and time series analyses.

Example 4.4.

Here we use aggregate() to get identical (but reformatted) results to the prior example.

aggregate(rate ~ drug + time, mean, data = heart)

drug time rate
1 AX23 t1 70.500
2 BWW9 t1 81.750
3 Ctrl t1 72.750
4 AX23 t2 80.500
5 BWW9 t2 84.000
6 Ctrl t2 72.375
7 AX23 t3 81.000
8 BWW9 t3 78.625
9 Ctrl t3 71.500
10 AX23 t4 73.125
11 BWW9 t4 79.750
12 Ctrl t4 71.000

Importantly, the first argument, rate ~ drug + time is an object of class formula:

f.rate <- with(heart, rate ~ drug + time)
class(f.rate)

[1] "formula"

The tilde operator, ~, allows expression of the formulaic framework: y ~ model, where y is a
response variable and model specifies a system of (generally) one or more predictor variables.

Objects of class formula have base type language:
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typeof(f.rate)

[1] "language"

The language base type is used for unevaluated expressions other than constants and names.

Examples include formulae, and local function assignments.

�

4.1.2 outer()

Another important function for matrix operations is outer(). This algorithm allows creation

of an array that contains all possible combinations of two atomic vectors or arrays with respect

to a user-specified function. The outer() function has three required arguments.

• The first two arguments, X and Y, define arrays or atomic vectors. X and Y can be identical
if one wishes to examine pairwise operations of the array elements (see example below).

• The third argument, FUN, specifies a function to be used in operations.

Example 4.5.

Suppose I wish to find the means of all possible pairs of observations from a numerical vector.

I could use the following commands:

x <- c(1, 2, 3, 5, 4)
outer(x, x, "+")/2

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0 1.5 2.0 3.0 2.5
[2,] 1.5 2.0 2.5 3.5 3.0
[3,] 2.0 2.5 3.0 4.0 3.5
[4,] 3.0 3.5 4.0 5.0 4.5
[5,] 2.5 3.0 3.5 4.5 4.0

The argument FUN = "+" indicates that we wish to add elements to each other. We divide

these sums by two to obtain means. Note that the diagonal of the output matrix contains the

original elements of x, because the mean of a number and itself is the original number. The

upper and lower triangles are identical because the mean of elements a and bwill be the same

as the mean of the elements b and a. Note that the matrix outer product of two vectors x and y
can be obtained using outer(x, y, "*") or simply outer(x, y) (Section 3.1.2.1).

outer(x, x, "*")

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 5 4
[2,] 2 4 6 10 8
[3,] 3 6 9 15 12
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[4,] 5 10 15 25 20
[5,] 4 8 12 20 16

x %o% x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 5 4
[2,] 2 4 6 10 8
[3,] 3 6 9 15 12
[4,] 5 10 15 25 20
[5,] 4 8 12 20 16

�

4.1.3 stack(), unstack() and reshape()

When manipulating lists and dataframes it is often useful to move between so-called “long”

and “wide” data table formats. These operations can be handled with the functions stack()
and unstack(). Specifically, stack() concatenates multiple vectors into a single vector along

with a factor indicating where each observation originated, whereas unstack() reverses this
process.

Example 4.6.

Consider the 4 x 4 dataframe below.

dataf <- data.frame(matrix(nrow = 4, data = rnorm(16)))
names(dataf) <- c("col1", "col2", "col3", "col4")
dataf

col1 col2 col3 col4
1 -0.05811 0.328948 0.22311 -0.92645
2 0.52397 0.013364 -0.17729 0.78345
3 0.22395 1.218781 0.29263 -1.44949
4 -0.41296 0.499720 -0.64941 0.64079

Here I stack dataf into a long table format.

sdataf <- stack(dataf)
sdataf

values ind
1 -0.058110 col1
2 0.523970 col1
3 0.223945 col1
4 -0.412963 col1
5 0.328948 col2
6 0.013364 col2
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7 1.218781 col2
8 0.499720 col2
9 0.223109 col3
10 -0.177291 col3
11 0.292631 col3
12 -0.649410 col3
13 -0.926448 col4
14 0.783446 col4
15 -1.449493 col4
16 0.640787 col4

Here I unstack sdataf.

unstack(sdataf)

col1 col2 col3 col4
1 -0.05811 0.328948 0.22311 -0.92645
2 0.52397 0.013364 -0.17729 0.78345
3 0.22395 1.218781 0.29263 -1.44949
4 -0.41296 0.499720 -0.64941 0.64079

The function reshape() can handle both stacking and unstacking operations. Here I stack

dataf. The arguments timevar, idvar, and v.names are used to provide recognizable iden-

tifiers for the columns in the wide table format, observations within those columns, and

responses for those combinations.

reshape(dataf, direction = "long",
varying = list(names(dataf)),
timevar = "Column",
idvar = "Column obs.",
v.names = "Response")

Column Response Column obs.
1.1 1 -0.058110 1
2.1 1 0.523970 2
3.1 1 0.223945 3
4.1 1 -0.412963 4
1.2 2 0.328948 1
2.2 2 0.013364 2
3.2 2 1.218781 3
4.2 2 0.499720 4
1.3 3 0.223109 1
2.3 3 -0.177291 2
3.3 3 0.292631 3
4.3 3 -0.649410 4
1.4 4 -0.926448 1
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2.4 4 0.783446 2
3.4 4 -1.449493 3
4.4 4 0.640787 4

�

4.2 Other Simple Data Management Functions

4.2.1 replace()

One use the function replace() to replace elements in an atomic vector based, potentially, on

Boolean logic. The function requires three arguments.

• The first argument, x, specifies the vector to be analyzed.
• The second argument, list, connotes which elements need to be replaced. A logical

argument can be used here as a replacement index.

• The third argument, values, defines the replacement value(s).

Example 4.7.

For instance:

Age <- c(21, 19, 25, 26, 18, 19)
replace(Age, Age < 25, "R is Cool")

[1] "R is Cool" "R is Cool" "25" "26" "R is Cool" "R is Cool"

Of course, one can also use square brackets for this operation.

Age[Age < 25] <- "R is Cool"
Age

[1] "R is Cool" "R is Cool" "25" "26" "R is Cool" "R is Cool"

�

4.2.2 which()

The function which can be used with logical commands to obtain address indices for data

storage object.

Example 4.8.

For instance:

Age <- c(21, 19, 25, 26, 18, 19)
w <- which(Age <= 21)
w
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[1] 1 2 5 6

Elements one, two, and five meet this criterion. We can now subset based on the index w.

Age[w]

[1] 21 19 18 19

To find which element in Age is closest to 24 I could do something like:

which(abs(Age - 24) == min(abs(Age - 24)))

[1] 3

�

4.2.3 sort()

By default, The function sort() sorts data from an atomic vector into an alphanumeric as-

cending order.

sort(Age)

[1] 18 19 19 21 25 26

Data can be sorted in a descending order by specifying decreasing = TRUE.

sort(Age, decreasing = T)

[1] 26 25 21 19 19 18

4.2.4 rank()

The function rank gives the ascending alphanumeric rank of elements in a vector. Ties are given

the average of their ranks. This operation is important to rank-based permutation analyses

(Aho, 2014, Ch 6).

rank(Age)

[1] 4.0 2.5 5.0 6.0 1.0 2.5

The second and last observations were the second smallest in Age. Thus, their average rank is
2.5.

4.2.5 order()

The function order() is similar to which() in that it provides element indices that accord

with an alphanumeric ordering. This allows one to sort a vector, matrix or dataframe into an
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ascending or descending order, based on one or several ordered vectors.

Example 4.9.

Consider the dataframe below which lists plant percent cover data for four plant species at

three sites. In accordance with the field.data example from Ch 3, plant species are identified

with four letter codes, corresponding to the first two letters of the taxa genus and species

names.

field.data <- data.frame(code = c("ACMI", "ELSC", "CAEL", "TACE"),
site1 = c(12, 13, 14, 11),
site2 = c(0, 20, 4, 5),
site3 = c(20, 10, 30, 0))

field.data

code site1 site2 site3
1 ACMI 12 0 20
2 ELSC 13 20 10
3 CAEL 14 4 30
4 TACE 11 5 0

Assume that we wish to sort the data with respect to an alphanumeric ordering of species

codes. Here we obtain the ordering of the codes

o <- order(field.data$code)
o

[1] 1 3 2 4

Now we can sort the rows of field.data based on this ordering.

field.data[o,]

code site1 site2 site3
1 ACMI 12 0 20
3 CAEL 14 4 30
2 ELSC 13 20 10
4 TACE 11 5 0

�

4.2.6 unique()

To identify unique values in dataset we can use the function unique().

Example 4.10.

Below is an atomic vector listing species from a bird survey on islands in southeast Alaska.
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Species ciphers follow the same coding method used in Example 4.9. Note that there are a

large number of repeats.

AK.bird <- c("GLGU", "MEGU", "DOCO", "PAJA", "COLO", "BUFF", "COGO",
"WHSC", "TUSW", "GRSC", "GRTE", "REME", "BLOY", "REPH",
"SEPL", "LESA", "ROSA", "WESA", "WISN", "BAEA", "SHOW",
"GLGU", "MEGU", "PAJA", "DOCO", "GRSC", "GRTE", "BUFF",
"MADU", "TUSW", "REME", "SEPL", "REPH", "ROSA", "LESA",
"COSN", "BAEA", "ROHA")

length(AK.bird)

[1] 38

Applying unique()we obtain a listing of the 24 unique bird species.

unique(AK.bird)

[1] "GLGU" "MEGU" "DOCO" "PAJA" "COLO" "BUFF" "COGO" "WHSC" "TUSW" "GRSC"
[11] "GRTE" "REME" "BLOY" "REPH" "SEPL" "LESA" "ROSA" "WESA" "WISN" "BAEA"
[21] "SHOW" "MADU" "COSN" "ROHA"

�

4.2.7 match()

Given two vectors, the function match() indexes where objects in the second vector appear in

the elements of the first vector. For instance:

x <- c(6, 5, 4, 3, 2, 7)
y <- c(2, 1, 4, 3, 5, 6)
m <- match(y, x)
m

[1] 5 NA 3 4 2 1

The number 2 (the 1st element in y) is the 5th element of x, thus the number 5 is put 1st in

the vector m created by match. The number 1 (the 2nd element of y) does not occur in x (it
is NA). The number 4 is the 3rd element of y and x. Thus, the number 3 is given as the third

element of m, and so on.

Example 4.11.

The usefulness of match()may seem unclear at first, but consider a scenario in which I want

to convert species code identifiers in field data into actual species names. The following

dataframe is a species list that matches four letter species codes to scientific names. Note that

the list contains more species than than the field.data dataset used in Example 4.9.



4.2. OTHER SIMPLE DATA MANAGEMENT FUNCTIONS 131

species.list <- data.frame(code = c("ACMI", "ASFO", "ELSC", "ERRY", "CAEL",
"CAPA", "TACE"), names = c("Achillea millefolium", "Aster foliaceus",

"Elymus scribneri", "Erigeron rydbergii",
"Carex elynoides", "Carex paysonis",
"Taraxacum ceratophorum"))

species.list

code names
1 ACMI Achillea millefolium
2 ASFO Aster foliaceus
3 ELSC Elymus scribneri
4 ERRY Erigeron rydbergii
5 CAEL Carex elynoides
6 CAPA Carex paysonis
7 TACE Taraxacum ceratophorum

Here I add a column in the field.data containing the actual species names using match().

m <- match(field.data$code, species.list$code)
field.data.new <- field.data # make a copy of field data
field.data.new$species.name <- species.list$names[m]
field.data.new

code site1 site2 site3 species.name
1 ACMI 12 0 20 Achillea millefolium
2 ELSC 13 20 10 Elymus scribneri
3 CAEL 14 4 30 Carex elynoides
4 TACE 11 5 0 Taraxacum ceratophorum

�

4.2.8 which() and %in%

We can use the operator %in% in conjunction with the function which() to achieve the same

results as match().

m <- which(species.list$code %in% field.data$code)
field.data.new$species.name <- species.list$names[m]
field.data.new

code site1 site2 site3 species.name
1 ACMI 12 0 20 Achillea millefolium
2 ELSC 13 20 10 Elymus scribneri
3 CAEL 14 4 30 Carex elynoides
4 TACE 11 5 0 Taraxacum ceratophorum
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Note that the arrangement of arguments are reversed in match() and which(). In the

former we have: match(field.data$code, species.list$code). In the latter we have:

which(species.list$code %in% field.data$code).

4.3 Matching, Querying and Substituting in Strings

R contains a number of useful methods for handling character string data. Strings will have

class and base type character.

4.3.1 strtrim() and substr()

The functions strtrim() and substr() are useful for extracting subsets from strings or string

vectors.

Example 4.12.

For the taxonomic codes in the character vector below, the first capital letter indicates whether

a species is a flowering plant (anthophyte) or moss (bryophyte) while the last four letters give

species codes (see Example 4.9).

plant <- c("A_CAAT", "B_CASP", "A_SARI")

Assume that I want to distinguish anthophytes from bryophytes by extracting the first letter.

This can be done by specifying 1 in the second strtrim argument, width.

phylum <- strtrim(plant, 1)
phylum

[1] "A" "B" "A"

plant[phylum == "A"]

[1] "A_CAAT" "A_SARI"

The function substr() is useful for imposing the start and end of strings to be subset. Here I

extract string components 3-4 (the first two letters of the genus name).

substr(plant, 3, 4)

[1] "CA" "CA" "SA"

�

4.3.2 strsplit()

The functionstrsplit() splits a character string into substrings basedonuser defined criteria.
It contains two important arguments.
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• The first argument, x, specifies the character string to be analyzed.
• The second argument, split, is a character criterion that is used for splitting.

Example 4.13.

Below I split the character string ACMI in two, based on the space between thewords Achillea
and millefolium.

ACMI <- "Achillea millefolium"
strsplit(ACMI, " ")

[[1]]
[1] "Achillea" "millefolium"

Note that the result is a list. To get back to a vector (now with two components), I can use the

function unlist().

unlist(strsplit(ACMI, " "))

[1] "Achillea" "millefolium"

Here I split based on the letter "l".

strsplit(ACMI, "l")

[[1]]
[1] "Achi" "" "ea mi" "" "efo" "ium"

Interestingly, letting the split criterion equal NULL results in spaces being placed between

every character in a string.

strsplit(ACMI, NULL)

[[1]]
[1] "A" "c" "h" "i" "l" "l" "e" "a" " " "m" "i" "l" "l" "e" "f" "o" "l"
[18] "i" "u" "m"

We can use this outcome to reverse the order of characters in a string.

sapply(lapply(strsplit(ACMI, NULL), rev), paste, collapse = "")

[1] "muilofellim aellihcA"

The function rev() provides a reversed version of its first argument, in this case a result from

strsplit(). The function paste() can be use to paste together character strings.

�

Criteria for querying strings can include multiple characters in a particular order, and a partic-

ular case:
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x <- "R is free software and comes with ABSOLUTELY NO WARRANTY"
strsplit(x, "so")

[[1]]
[1] "R is free "
[2] "ftware and comes with ABSOLUTELY NO WARRANTY"

Note that the "SO" in "ABSOLUTELY" is ignored because it is upper case.

4.3.3 grep() and grepl()

The functions grep() and grepl() can be used to identify which elements in a character

vector have a specified pattern. They have the same first two arguments.

• The first argument, pattern specifies a patterns to be matched. This can be a character

string, or object coercible to a character string, or a regular expression (see below).

• The second argument, x, is a character vector where matches are sought.

Example 4.14.

The function grep() returns indices identifying which entries in a vector contain a queried

pattern. In the character vector below, we see that entries five and six have the same genus,

Carex.

names = c("Achillea millefolium", "Aster foliaceus",
"Elymus scribneri", "Erigeron rydbergii",
"Carex elynoides", "Carex paysonis",
"Taraxacum ceratophorum")

grep("Carex", names)

[1] 5 6

The function grepl() does the same thing with Boolean outcomes.

grepl("Carex", names)

[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE

Of course, we could use this information to subset names.

names[grep("Carex", names)]

[1] "Carex elynoides" "Carex paysonis"

We can also get grep to return the values directly by specifying value = TRUE.
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grep("Carex", names, value = TRUE)

[1] "Carex elynoides" "Carex paysonis"

�

4.3.4 gsub()

The function gsub() can be used to substitute text that has a specified pattern. Several of its

arguments are identical to grep() and grepl():

• As before, the first argument, pattern, specifies a pattern to be matched.

• The second argument, replacement, specifies a replacement for the matched pattern.

• The third argument, x, is a character vectorwhereinmatches are sought and substitutions

are made.

Example 4.15.

Here we substitute "C." for occurrences of "Carex" in names.

gsub("Carex", "C.", names)

[1] "Achillea millefolium" "Aster foliaceus"
[3] "Elymus scribneri" "Erigeron rydbergii"
[5] "C. elynoides" "C. paysonis"
[7] "Taraxacum ceratophorum"

�

4.3.5 gregexpr()

The function gregexpr() identifies the start and end ofmatching sections in a character vector.

Example 4.16.

Here we examine the first two entries in names, looking for the genus Aster.

gregexpr("Aster", names[c(1:2)])

[[1]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
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[[2]]
[1] 1
attr(,"match.length")
[1] 5
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

The output list is cryptic at best and requires some explanation. The first two elements

in each of the two list components indicate the character number of the start and end of

the matched string. For the first list component, these elements are given the identifier -1
because "Achillea millefolium" does not contain the pattern "Aster". For the second list

component, these elements are 1 and 5 because "Aster" makes up the first five letters of

"Aster foliaceus".

�

4.3.6 Regular Expressions

A number of R functions for managing character strings, including grep(), grepl(),
gregexpr(), gsub(), and strsplit(), can can incorporate regular expressions. In computer

programming, a regular expression (often abbreviated as regex) is a sequence of characters

that allow pattern matching in text. Regular expressions have developed within a number

of programming frameworks including the POSIX standard (the Portable Operating System

Interface standard), developed by the IEEE, and particularly the language Perl1. Regular

expressions in R include extended regular expressions (this is the default for most pattern

matching and replacement R functions), and Perl-like regular expressions.

4.3.6.1 Extended Regular Expressions

Default extended regular expressions in R use a POSIX framework for commands2, which

includes the use of particular metacharacters. These are: \, |, ( ), [ ], ^, $, ., { }, *, +, and ?.
The metacharacters will vary in meaning depending if they occur outside of square brackets, [
and ], or inside of square brackets. The former usage means that they are part of a character

class (see below). In non-bracketed usage, the metacharacters in the subset below have the

following applications (see https://www.pcre.org/original/pcre.txt):

• ^ start of string or line.
• $ end of string or line.

• . match any character except newline.

1The Perl programming language was introduced by Larry Wall in 1987 as a Unix scripting tool to facilitate

report processing (Wikipedia, 2023d). Despite criticisms as an awkward language, Perl remains widely used for

its regular expression framework and string parsing capabilities.
2Specifically, they use a version of the POSIX 1003.2 standard.

https://www.pcre.org/original/pcre.txt
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html.
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• | start of alternative branch.
• ( ) start and end subpattern.

• { } start and end min/max repetition specification.

Several regular expression metacharacters can be placed at the end of the end of a regular

expression to specify repetition. For instance, "*" indicates the preceding pattern should be

matched zero or more times, "{+}" indicates the preceding pattern should be matched one or

more times, "{n}" indicates the preceding pattern should be matched exactly nmore times,

and "{n,}" indicates the preceding pattern should be matched n or more times.

Example 4.17.

Wewill use the function regmatches(), which extracts or replaces matched substrings from

gregexpr() summaries, to illustrate.

string <- "%aaabaaab"
ID <- gregexpr("a{1}", string)
regmatches(string, ID)

[[1]]
[1] "a" "a" "a" "a" "a" "a"

ID <- gregexpr("a{2}", string)
regmatches(string, ID)

[[1]]
[1] "aa" "aa"

ID <- gregexpr("a{2,}", string)
regmatches(string, ID)

[[1]]
[1] "aaa" "aaa"

�

Example 4.18.

Metacharacters can be used together. For instance, the code below demonstrates how one

might get rid of one or more extra spaces at the end of character strings.

string <- c("###Now is the time ",
"# for all ",
"#",
" good men",
"### to come to the aid of their country. ")

out <- gsub(" +$", "", string) # drop extra space(s) at end of strings
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out <- gsub("^#*","", out) # drop pound sign(s)

paste(out, collapse = "")

[1] "Now is the time for all good men to come to the aid of their country."

�

Example 4.19.

As a biological example, microbial “taxa” identifiers can include cryptic Amplicon Sequence

Variant (ASV) codes, followed by a general taxonomic assignment. For example, here is an ASV

identifier for a bacterium within the family Comamonadaceae.

asv <- "6abc517aa40e9e7b9c652902fe04bb1a:f__Comamonadaceae"

We can delete the ASV code, which ends in a colon, with:

gsub(".*:", "", asv)

[1] "f__Comamonadaceae"

The regex script in the first argument means: “match any character string occurring zero or

more times that ends in :”.

�

Example 4.20.

As another example, RMarkdown delimits monospace font using accent grave metacharacters,

` `, while LaTeX applies this font between the expression \texttt{ and }. Below I convert

a RMarkdown-style character vector containing some monospace strings to a LaTeX-style

character vector.

char.vec <- c("`+`", "addition", "$2 + 2$", "`2 + 2`")
gsub("(`)(.*)(`)","\\\texttt{\\2}", char.vec)

[1] "\texttt{+}" "addition" "$2 + 2$" "\texttt{2 + 2}"

With the code

"(`)(.*)(`)"

I subset RMarkdown strings in char.vec into three potential components: 1) the `metachar-

acter beginning the string, 2) the text content between `metacharacters, and 3) the closing `
metacharacter itself. I insert the content in item 2 (indicated as \\2) between \texttt{ and }
using:
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"\\\texttt{\\2}"

�

Importantly, Example 4.20 illustrates the procedure to use if a queried character is itself a

general expression metacharacter. For instance, the backslash in \texttt. In this case, the

metacharacter must be escaped using single or double backslashes. That is, \textttmust be

specified as \\\texttt in gsub().

Example 4.21.

Here I ask for a string split based on the appearance of ? (which is a regex metacharacter) and

% (which is not).

string <- "m?2%b"
strsplit(string, "[\\?%]")

[[1]]
[1] "m" "2" "b"

�

Character class A regular expression character class is comprised of a collection of charac-

ters, specifying some query or pattern, situated between quotes (single or double) and square

brace metacharacters, e.g., "[" and "]". Thus, the code "[\\?%]" in the previous example

defines a character class. Character class pattern matches will be evaluated for any single

character in the specified text. The reverse will occur if the first character of the pattern is the

regular expression caret metacharacter, ^. For example, the expression "[0-9]"matches any

single numeric character in a string, (the regular expression metacharacter - can be used to

specify a range) and [^abc]matches anything except the characters "a", "b" or "c".

Example 4.22.

Consider the following examples:

string <- "a1c&m2%b"
strsplit(string, "[0-9]")

[[1]]
[1] "a" "c&m" "%b"

strsplit(string, "[^abc]")

[[1]]
[1] "a" "c" "" "" "" "b"

�
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Example 4.23.

This regular expression will match most email addresses:

pattern <- "[-a-z0-9_.%]+\\@[-a-z0-9_.%]+\\.[a-z]+"

The expression literally reads: “1) find one or more occurrences of characters in a-z or A-Z or

0-9 or dashes or periods, followed by 2) the ampersand symbol (literally), followed by 3) one

or more occurrences of characters in a-z or A-Z or 0-9 or dashes or periods, followed by 4) a

literal period, followed by one or more occurrences of the letters a-z or A-Z.” Here is a string

we wish to query:

string <- c("abc_noboby@isu.edu",
"text with no email",
"me@mything.com",
"also",
"you@yourspace.com",
"@you"
)

We confirm that elements 1, 3, and 5 from string are email addresses.

grep(pattern, string, ignore.case = TRUE, value = TRUE)

[1] "abc_noboby@isu.edu" "me@mything.com" "you@yourspace.com"

�

Certain character classes are predefined. These classes have names that are bounded by two

square brackets and colons, and include "[[:lower:]]" and "[[:upper:]]"which identify

lower and upper case letters, "[:punct:]"which identifies punctuation, [[:alnum:]], which

identifies all alphanumeric characters, and "[[:space:]]", which identifies space characters,

e.g., tab and newline.

string <- c("M2Ab", "def", "?", "%", "\n")
grepl("[[:lower:]]", string)

[1] TRUE TRUE FALSE FALSE FALSE

grepl("[[:upper:]]", string)

[1] TRUE FALSE FALSE FALSE FALSE

grepl("[[:punct:]]", string)

[1] FALSE FALSE TRUE TRUE FALSE
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grepl("[[:space:]]", string) # item five is a newline request

[1] FALSE FALSE FALSE FALSE TRUE

Here I ask R to return elements from string that are three or more characters long.

grep("[[:alnum:]]{3}", string, value = TRUE)

[1] "M2Ab" "def"

4.3.6.1.1 Turning off regular expressions For some pattern matching and replacement

jobs it may be best turn off the default extended regular expressions and use exact matching by

specifying fixed = TRUE. For example, Rmay place periods in the place of spaces in character

strings and column names in dataframes and arrays.

Example 4.24.

Consider the following example:

countries <- c("United.States", "United.Arab.Emirates", "China", "Germany")
gsub(".", " ", countries)

[1] " " " " " "
[4] " "

Note that using gsub(".", " ", countries) results in the replacement of all text with

spaces because of the meaning of the period metacharacter. To get the desired result we could

use:

gsub(".", " ", countries, fixed = TRUE)

[1] "United States" "United Arab Emirates" "China"
[4] "Germany"

Of course we could also double escape the period.

gsub("\\.", " ", countries)

[1] "United States" "United Arab Emirates" "China"
[4] "Germany"

�

4.3.6.2 Perl-like Regular Expressions

The R character string functions grep(), grepl(), regexpr(), gregexpr(), sub(), gsub(),
and strsplit() allow Perl-like regular expression patternmatching. This is done by specifying

perl = TRUE, which switches regular expression handling to the PRCE package. Perl allows
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handling of the POSIX predefined character classes, e.g., "[[:lower:]]", along with a wide

variety of other calls which are generally implemented using metacharacters and double

backslash commands. Here are some examples.

• \\d any decimal digit.

• \\D any character that is not a decimal digit.

• \\h any horizontal white space character (e.g., tab, space).

• \\H any character that is not a horizontal white space character.

• \\s any white space character.

• \\S any character that is not a white space character.

• \\v any vertical white space character (e.g., newline).

• \\V any character that is not a vertical white space character.

• \\w any word, i.e., letter or character components separated by white space.

• \\W any non word.

• \\b a word boundary.

• \\U upper case character (dependent on context).

• \\L lower case character (dependent on context).

Note that reversals in meaning occur for capitalized and uncapitalized commands.

Example 4.25.

Here we identify string entries containing numbers.

string <- c("Acidobacteria", "Actinobacteria", "TM7.1", "Gitt-GS-136",
"Chloroflexia", "Bacili")

grep("\\d", string, perl = TRUE)

[1] 3 4

And those containing non-numeric characters (i.e., all of the entries).

grep("\\D", string, perl = TRUE)

[1] 1 2 3 4 5 6

To subset non-numeric entries, one could do something like:

string[-grep("\\d", string, perl = TRUE)]

[1] "Acidobacteria" "Actinobacteria" "Chloroflexia" "Bacili"

�

Example 4.26.

As a slightly extended example we will count the number of words in the description of the
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GNU public licences inR (obtained via RShowDoc("COPYING")). Ideas here largely follow from

the function DescTools::StrCountW() (Signorell, 2023).

Text can be read from a connection using the function readLines().

GNU <- readLines(RShowDoc("COPYING"))
head(GNU)

[1] "\t\t GNU GENERAL PUBLIC LICENSE"
[2] "\t\t Version 2, June 1991"
[3] ""
[4] " Copyright (C) 1989, 1991 Free Software Foundation, Inc."
[5] " 51 Franklin St, Fifth Floor, Boston, MA 02110-
1301 USA"
[6] " Everyone is permitted to copy and distribute verbatim copies"

Note that the escaped command \t represent the ASCII (American character encoding stan-

dard) control character for tab return. Other useful escaped control characters include \n,
indicating new line or carriage return.

To search for words, we will actually identify string components that are not words, identified

with the Perl regex command \\W and word boundaries, i.e., \\b. We can combine these

summarily as: \\b\\W+\\b. The call \\W+ indicates a non-word match occurring one or more

times. Here we apply this regular expression to the first element of GNU.

GNU[1]

[1] "\t\t GNU GENERAL PUBLIC LICENSE"

gregexpr("\\b\\W+\\b", GNU[1], perl = TRUE)

[[1]]
[1] 10 18 25
attr(,"match.length")
[1] 1 1 1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

Matches occur at three locations, 10, 18, and 25, which separate the four words GNU GENERAL
PUBLIC LICENSE. Thus, to analyze the entire document we could use:

sum(sapply(gregexpr("\\b\\W+\\b", GNU, perl = TRUE),
function(x) sum(x > 0)) + 1)

[1] 3048

There are 3048 total words in the license description.
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�

One can identify substrings by number using Perl.

Example 4.27.

In this example, I subdivide a string into two components, the first character, i.e., "(\\w)", and
the remaining zero or more characters: "(\\w*)". These are referred to in the substitute
argument of gsub as items \\1 and \\2, respectively. Capitalization for these substrings are

handled in different ways below.

string <- "achillea"
gsub("(\\w)(\\w*)", "\\U\\1\\U\\2", string, perl=TRUE) # all caps

[1] "ACHILLEA"

gsub("(\\w)(\\w*)", "\\L\\1\\U\\2", string, perl=TRUE) # low, then upper case

[1] "aCHILLEA"

gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", string, perl=TRUE) # up, then lower case

[1] "Achillea"

The functions tolower() and toupper() provide simpler approaches to convert letters to

lower and upper case, respectively.

toupper(string)

[1] "ACHILLEA"

�

4.4 Date-Time Classes

There are two basic R date-time classes, POSIXlt and POSIXct3. Class POSIXct represents the

(signed) number of seconds since the beginning of 1970 (in the UTC time zone) as a numeric

vector. An object of class POSIXlt will be comprised of a list of vectors with the names sec, min,
hour, mday (day of month), mon (month), year, wday (day of week), and yday (day of year).

POSIX naming conventions include:

• %m = Month as a decimal number (01–12).

• %d = Day of the month as a decimal number (01–31).

• %Y = Year. Designations in 0:9999 are accepted.
• %H = Hour as a decimal number (00–23).

• %M = Minute as a decimal number (00–59

3Recall the POSIX prefix refers to the IEEE standard Portable Operating System Interface.
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Example 4.28.

As an example, below are twenty dates and corresponding binary water presence measures (0

= water absent, 1 = water present) recorded at 2.5 hour intervals for an intermittent stream

site in southwest Idaho (Aho et al., 2023a).

dates <- c("08/13/2019 04:00", "08/13/2019 06:30", "08/13/2019 09:00",
"08/13/2019 11:30", "08/13/2019 14:00", "08/13/2019 16:30",
"08/13/2019 19:00", "08/13/2019 21:30", "08/14/2019 00:00",
"08/14/2019 02:30", "08/14/2019 05:00", "08/14/2019 07:30",
"08/14/2019 10:00", "08/14/2019 12:30", "08/14/2019 15:00",
"08/14/2019 17:30", "08/14/2019 20:00", "08/14/2019 22:30",
"08/15/2019 01:00", "08/15/2019 03:30")

pres.abs <- c(1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1)

To convert the character string dates to a date-time objectwe can use the function strptime().
We have:

dates.ts <- strptime(dates, format = "%m/%d/%Y %H:%M")
class(dates.ts)

[1] "POSIXlt" "POSIXt"

Note that the dates can now be evaluated numerically.

dates.df <- data.frame(dates = dates.ts, pres.abs = pres.abs)
summary(dates.df)

dates pres.abs
Min. :2019-08-13 04:00:00 Min. :0.00
1st Qu.:2019-08-13 15:52:30 1st Qu.:0.75
Median :2019-08-14 03:45:00 Median :1.00
Mean :2019-08-14 03:45:00 Mean :0.75
3rd Qu.:2019-08-14 15:37:30 3rd Qu.:1.00
Max. :2019-08-15 03:30:00 Max. :1.00

I can also easily extract time series components.

dates.ts$mday # day of month

[1] 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15

dates.ts$wday # day of week

[1] 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4

dates.ts$hour # hour
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[1] 4 6 9 11 14 16 19 21 0 2 5 7 10 12 15 17 20 22 1 3

�

Exercises

1. Using the plant dataset fromQuestion 5 in the Exercises at the end of Chapter 3, perform

the following operations.

(a) Attempt to simultaneously calculate the column means for plant height and soil %

N using FUN = mean in apply(). Was there an issue? Why?

(b) Eliminate missing rows in plant using na.omit() and repeat (a). Did this change

the mean for plant height? Why?

(c) Modify the FUN argument in apply() to be: FUN = function(x) mean(x, na.rm
= TRUE). This will eliminate NAs on a column by column basis.

(d) Compare the results in (a), (b), (c). Which is the best approach? Why?

(e) Find the mean and variance of plant heights for each Management Type in plant
using tapply(). Use the best practice approach for FUN, as deduced in (d).

2. For the questions below, use the list object list.data.

(a) Use sapply(list.data, FUN = length) to get the number of components in

each element of list.data.
(b) Repeat (a) using lapply(). How is the output in (b) different from (a)?

list.data <- list(a = 1:9, height = rnorm(50),
greet = c("hello", "goodbye", "hello"))

3. A frequently used statistical application is the calculation of all possiblemean differences.

Assume that we have arithmetic means for the treatments trt1, trt2, trt3, trt4 and
trt5, given in the object means below.

(a) Calculate all possible mean differences using means as the first two arguments in

outer(), and letting FUN = "-".
(b) Extract meaningful and non-redundant differences by using upper.tri() or

lower.tri() (Section 3.4.4). There should be (52) = 10meaningful (not simply a

mean subtracted from itself) and non-redundant differences.

means <- c(trt1 = 20.5, trt2 = 15.3, trt3 = 22.1, trt4 = 30.4,
trt5 = 28)

4. Using the plant dataset from Question 5 in the Exercises for Chapter 3, perform the

following operations.

(a) Use the function replace() to identify samples with soil N less than 13.5% by

identifying them as "Npoor".
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(b) Use the function which() to identify which plant heights are greater than or equal

to 33.2 dm.

(c) Sort plant heights using the function sort().
(d) Sort the plant dataset with respect to ascending values of plant height using the

function order().

5. Using match() or which and %in%, replace the code column names in the dataset

cliff.sp from the package asbio, with the correct scientific names (genus and specific

epithet) from the dataframe sp.list below.

sp.list <- data.frame(code = c("L_ASCA","L_CLCI","L_COSPP","L_COUN",
"L_DEIN","L_LCAT", "L_LCST","L_LEDI","M_POSP","L_STDR","L_THSP",
"L_TOCA","L_XAEL","M_AMSE", "M_CRFI","M_DISP","M_WECO","P_MIGU",
"P_POAR","P_SAOD"),
sci.name = c("Aspicilia caesiocineria","Caloplaca citrina",
"Collema spp.", "Collema undulatum", "Dermatocarpon intestiniforme",
"Lecidea atrobrunnea", "Lecidella stigmatea", "Lecanora dispersa",
"Pohlia sp.", "Staurothele drummondii", "Thelidium species",
"Toninia candida", "Xanthoria elegans", "Amblystegium serpens",
"Cratoneuron filicinum", "Dicranella species", "Weissia controversa",
"Mimulus guttatus", "Poa pattersonii", "Saxifraga odontoloma"))

6. Using the sp.list dataframe from the previous question, perform the following op-

erations: (a) Apply strsplit() to the the column sp.list$sci.name to create a two

column dataframe with genus and corresponding species names. (b) A two character

prefix in the column sp.list$code indicates whether a taxon is a lichen (prefix = "L_"),
a marchantiophyte (prefix = "M_"), or a vascular plant (prefix = "P_"). Use grep() to
identify marchantiophytes.

7. Use the string vector string below to answer the following questions: (a) Use regular

expressions in the pattern argument of gsub() to get rid of extra spaces at the start

of string elements while preserving spaces between words. (b) Use the predefined

character class [[:alnum:]] and an accompanying quantifier in the pattern argument

from grep() to count the number of words whose length is greater than or equal to four

characters.

string <- c(" Statistics is ", " a ", " great topic.")

8. Remove the numbers from the character vector below using gsub() and an appropriate

Perl-like regular expression.

x <- c("enzyme1","enzyme12","enzyme3","tRNA1","tRNA205",
"mRNA6","mRNA17","mRNA8","mRNA100")

9. Consider the character vector times below, which has the format: day-month-year
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hour:minute:second. (a) Convert times into an object of class POSIXlt called

time.pos using the function strptime(). (b) Extract the day of the week from

time.pos. (c) Sort time.pos using sort() to verify that time.pos is quantitative.

times <- c("12-12-2023 12:12:20",
"12-01-2021 01:12:40",
"15-10-2021 23:10:15",
"25-07-2022 13:09:45")



Chapter 5

Welcome to the Tidyverse

“Data is like garbage. You’d better know what you are going to do with it before you

collect it.”

-Mark Twain, 1835 - 1910

5.1 The Tidyverse

This chapter demonstrates the data management capabilities of the tidyverse (Wickham et al.,

2019). Thus, Chapter 5 can be considered a tidyverse reconsideration of Ch 4. The tidyverse is

currently a collection of eight core packages (Fig 5.1). These are:

• dplyr Grammar and functions for data manipulation.

• forcats Tools for solving common problems with factors.

• ggplot2 A system for “declaratively creating graphics”, based on the book The Grammar

of Graphics (Wilkinson, 2012).

• purrr An enhancement of R’s functional programming (FP) toolkit.

• readr Methods for reading rectangular data.

• stringr Functions to facilitate working with strings.

• tibble A “modern re-imagining of the data frame.”

• tidyr A set of functions for “tidying data.”
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https://dplyr.tidyverse.org/
https://forcats.tidyverse.org/
https://ggplot2.tidyverse.org/
https://purrr.tidyverse.org/
https://readr.tidyverse.org/
https://www.tidyverse.org/packages/
https://tibble.tidyverse.org/
https://tidyr.tidyverse.org/
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Figure 5.1: The main packages of the tidyverse.

The tidyverse library also contains several useful ancillary packages, including lubridate, re-

shape2, hms, blob,margrittr, and glue. While installing tidyversewill result in the installation

of both main and ancillary packages, loading the tidyverse will result only in the complete

loading of the eight main tidyverse packages.

Importantly, this chapter is not meant to be an authoritative summary of the tidyverse.

Coverage here is mostly limited to the core data management packagesmagrittr, tibble, dplyr,

stringer, and the ancillary packages lubridate and reshape2. The tidyverse ggplot2 package

is the major focus of Chapter 7. Wickham et al. (2023) provides a succinct but thorough

introduction to the tidyverse in the open source book R for Data Science. Useful tidyverse

“cheatsheets” can be found here.

The tidyverse packages can be downloaded using:

install.packages("tidyverse")

5.2 Pipes

An important convention of the tidyverse is the widespread use of the forward pipe operator:

|> . In programming, a pipe is a set of commands connected in series, where the output of one

command is the input of the next1. In many cases, use of pipes allows clearer representations

of coding processes2. Incidentally, the |> pipe, from the base package, is motivated by an older

forward pipe operator from the tidyverse packagemagrittr, %>%. As of R 4.1, the native pipe

operator for the tidyverse is |> (although %>%will still work ifmagrittr is loaded)3. Notably,

while |> is more syntactically (and algorithmically) streamlined than %>%, there are several

1Pipe programming dates back to early developments in Unix operating systems (Ritchie, 1984; Bell Labs,

2004), wherein pipes are codified as vertical bars "|". Along with Unix/Linux, pipes are widely used in the

languages F#, Julia, and JavaScript, among others.
2In particular, when you see |> it is helpful to think “and then”.
3The RStudio shortcut for %>% is Ctrl+Shift+m. To force RStudio to default to |>when using Ctrl+Shift+m

(or some other keyboard shortcut), one can modify appropriate settings in Tools>Global Options>Code.

https://r4ds.hadley.nz/
https://posit.co/resources/cheatsheets/


5.2. PIPES 151

features available to %>% that do not exist for |>, including the potential for a placeholder

operator4. Nonetheless, I focus on |>, not %>%, here.

Example 5.1.

Consider the circular operation: log𝑒(exp(1)). We could write this as,

1 |> exp() |> log()

[1] 1

Here the number 1 is piped into the function exp(), with the result: exp(1) = 𝑒1 = 𝑒, and
this outcome is piped into the function log(), with the result: log𝑒 𝑒 = 1. Because the first
arguments of exp() and log() are simply calls to numeric data, and these are provided by the

previous pipe segment, we do not have to include information about x for f(x) operations.
Thus, when functions require only the previous pipe segment result as an argument, then

x |> f() is equivalent to 𝑓(𝑥)5. In the case that multiple arguments need to be specified,

the script x |> f(y) is equivalent to 𝑓(𝑥, 𝑦), and x |> f(y) |> g(z) describes 𝑔(𝑓(𝑥, 𝑦), 𝑧).
For instance,

10 |> log(base = 2)

[1] 3.3219

�

Example 5.2.

This example illustrates that the forward pipe works recursively from the result of the previous

pipe segment, using the loblolly pine dataset.

head(Loblolly) # First 6 rows of data

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301
71 60.92 25 301

4In general, the dot placeholder operator, ., from magrittr allows operations like 𝑓(𝑥, 𝑦) by specifying x
|> f(.,y). For example: 2 %>% log(10, base = .). In this script the number 2 will be piped into the base
argument in the function log().

5The %>% forward pipe does not even require the () no argument designation. That is, x %>% f is equivalent
to 𝑓(𝑥).
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Loblolly |>
head() |>
tail(2) # Last 2 rows from first 6 rows

Grouped Data: height ~ age | Seed
height age Seed

57 52.70 20 301
71 60.92 25 301

�

Example 5.3.

We can define the result of a pipe to be a global variable (Sections 2.3.3, 8.2). Consider the

script and output below (Fig 5.2).

x <- seq(1,10,length=100)
y <- x |> sin()
plot(x, y, type = "l", ylab = "sin(x)", xlab = "x (radians)")
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0
−

0.
5

0.
0
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5

1.
0

x (radians)

si
n(

x)

Figure 5.2: Creating a global variable (object) resulting from a pipeline.

We will formally consider the function plot() in Ch 6.

�
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5.2.1 Other Pipes

It is worth noting that, in addition to %>%,magrittr contains several other potentially useful

pipe operators. These include the assignment pipe and the tee pipe. The assignment pipe

operator, %<>%, will pipe x into one or more f(x) expressions, and then assign the result to

the name x6. The tee pipe operator %T>% works like %>%, except the return value in x %T>%
f(x) is x itself. This is useful when a pipeline requires a side-effect like plotting or printing7.

5.3 tibble

The tidyverse package tibble provides an alternative to the data.frame format of data storage,

called a tibble. Tibbles have classes dataframe and tbl_df, allowing them to posses additional

characteristics including enhanced printing (see Example 5.4 below). Additional distinguishing

characteristics of tibbles include: 1) a character vector is not automatically coerced to have

class factor, 2) recycling (see Section 3.1.1) only occurs for an input of length one, and 3)

there is no partial matching when $ is used to index by tibble columns by name8. The functions

tibble() generates tibbles. The function as_tibble() coerces a dataframe to be a tibble.

Example 5.4.

Here we compare dataframe and tibble output of the same data.

data <- data.frame(numbers = 1:3, letters = c("a","b","c"),
date = as.Date(c("2021-12-1", "2021-12-2",

"2021-12-2"),
format = "%Y-%m-%d"))

data

numbers letters date
1 1 a 2021-12-01
2 2 b 2021-12-02
3 3 c 2021-12-02

library(tidyverse)
datat <- as_tibble(data)
datat

# A tibble: 3 x 3
numbers letters date

<int> <chr> <date>
6For instance, library(magrittr); x <- -4:4; x %<>% abs %>% sort; x would print the pipe-

modified version of x.
7For instance, rnorm(20) |> matrix(ncol = 2) %T>% plot |> colSums. In this case a plot and the sums

of columns will both be printed (see Example 5.12).
8According to package tibble: “…tibbles are lazy and surly: they do less and complain more than base

dataframes. This forces problems to be tackled earlier and more explicitly, typically leading to code that is

more expressive and robust.”
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1 1 a 2021-12-01
2 2 b 2021-12-02
3 3 c 2021-12-02

�

5.4 dplyr

The dplyr package contains a collection of core tidyverse algorithms for data manipulation9.

Table 5.1 lists some useful dplyr functions.

Table 5.1: Important dplyr data management functions.

Function Usage

summarise() Numerical summaries of variables.

group_by Group a dataframe by a categorical variable.

filter() Subset variables based on outcomes.

arrange() Reorder rows in a dataframe or tibble.

mutate() Creates new variables from functions of existing variables.

select() Selects variables from tibbles or dataframes.

5.4.1 summarize()

The function summarize(), or equivalently summarise(), creates a new data frame with one

row for each combination of specified grouping variables. If no groups are given (for instance,

in the case that group_by is not used to group data), dataframe rows will be summaries of all

observations in the required input .data argument.

Example 5.5.

Here we use summarize() to obtain means for loblolly pine height (in feet) and age (in years).

Loblolly |>
summarise(mean.height.ft = mean(height), mean.age.yrs = mean(age))

mean.height.ft mean.age.yrs
1 32.364 13

�

9dplyr has largely replaced the now retired plyr package.
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5.4.2 group_by()

The group_by() function is often used in conjunction with other dplyr functions, including

summarize(), to provide an underlying grouping framework for data summaries.

Example 5.6.

Here we use group_by() with summarize() to describe the Loblolly height data. Specifi-

cally, we will take the mean and the variance of Loblolly$heightwith respect to categories

specified in group_by().

Loblolly |>
group_by(Seed) |>
summarise(mean.height.ft = mean(height),

var.height.ft2 = var(height)
) |>

head(5)

# A tibble: 5 x 3
Seed mean.height.ft var.height.ft2
<ord> <dbl> <dbl>

1 329 30.3 443.
2 327 30.6 440.
3 325 31.9 468.
4 307 31.3 494.
5 331 31.0 495.

More than only grouping variable can be specified in group_by():

Loblolly |>
group_by(Seed, age) |>
summarise(mean.height.ft = mean(height),

var.height.ft2 = var(height)
) |>

head(5)

`summarise()` has grouped output by 'Seed'. You can override
using the `.groups` argument.

# A tibble: 5 x 4
# Groups: Seed [1]

Seed age mean.height.ft var.height.ft2
<ord> <dbl> <dbl> <dbl>

1 329 3 3.93 NA
2 329 5 9.34 NA
3 329 10 26.1 NA
4 329 15 37.8 NA
5 329 20 48.3 NA
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Clearly, group_by() and summarise() allow more options than the base function tapply()
(Section 4.1.1.4). The latter function only provides summaries of groups within a single cate-

gorical INDEX, with respect to a single quantitative vector, and a single user-defined function.

Starting with dplyr 1.1.0, we can use the .by argument in summarize to bypass group_by(),
although this argument is experimental, andmay be deprecated in the future (see ?summarise).

Loblolly |>
summarise(mean.height.ft = mean(height),

var.height.ft2 = var(height),
.by = Seed) |>

head(5)

Seed mean.height.ft var.height.ft2
1 301 33.247 512.50
2 303 34.107 552.24
3 305 35.115 572.51
4 307 31.328 493.83
5 309 33.782 535.12

�

5.4.3 filter()

The function filter() provides a straightforward way to extract dataframe rows based on

Boolean operators.

Example 5.7.

Here we obtain rows in Loblolly associated with seed type 301.

Loblolly |>
filter(Seed == "301")

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301
71 60.92 25 301

Here are Loblolly rows associated with height responses greater than 60 feet.

Loblolly |>
filter(height > 60)
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Grouped Data: height ~ age | Seed
height age Seed

71 60.92 25 301
72 63.39 25 303
73 64.10 25 305
75 63.05 25 309
77 60.07 25 315
78 60.69 25 319
79 60.28 25 321
80 61.62 25 323

�

5.4.4 arrange()

The function arrange() orders the rows of a data frame based on the alphanumeric ordering

of specified data.

Example 5.8.

Here we use arrange() to sort the result from the previous chunk from smallest to largest

loblolly pine heights.

Loblolly |>
filter(height > 60) |>
arrange(height)

Grouped Data: height ~ age | Seed
height age Seed

77 60.07 25 315
79 60.28 25 321
78 60.69 25 319
71 60.92 25 301
80 61.62 25 323
75 63.05 25 309
72 63.39 25 303
73 64.10 25 305

One can use arrange(desc()) to sort a dataframe in descending (largest-to-smallest) order.

Loblolly |>
filter(height > 60) |>
arrange(desc(height))

Grouped Data: height ~ age | Seed
height age Seed

73 64.10 25 305
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72 63.39 25 303
75 63.05 25 309
80 61.62 25 323
71 60.92 25 301
78 60.69 25 319
79 60.28 25 321
77 60.07 25 315

�

5.4.5 slice_min() and slice_max()

The helpful dplyr functions slice_min() and slice_max() allow subsetting of dataframe

rows by minimum and maximum values in some column, respectively.

Example 5.9.

Loblolly |>
slice_max(height, n = 5)

Grouped Data: height ~ age | Seed
height age Seed

73 64.10 25 305
72 63.39 25 303
75 63.05 25 309
80 61.62 25 323
71 60.92 25 301

�

5.4.6 select()

The select() function allows one to select particular variables in a data frame.

Example 5.10.

For instance, here I select height from Loblolly.

Loblolly |>
select(height) |>
head()

height
1 4.51
15 10.89
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29 28.72
43 41.74
57 52.70
71 60.92

�

The select() function can be used in more sophisticated ways by combining it with other

dplyr functions like starts_with() and ends_with(), or other Boolean operators.

Example 5.11.

He we select the height and age columns by calling for variable names that start with "h" or
end with "e".

Loblolly |>
select(starts_with("h"), ends_with("e")) |>
head(3)

height age
1 4.51 3
15 10.89 5
29 28.72 10

�

5.4.7 mutate()

The function mutate() creates new dataframe columns that are functions of existing variables.

Example 5.12.

Below we select the age and height columns using select(), convert height in feet to height

in meters using mutate(), plot the result as a side-task using the tee pipe, %T>% (note the use
of the . placeholder operator) (Fig 5.3), and then take the column means of age and height.
Note that by default, all columns from the previous pipe segment will be in the mutate()
output although all columns need not be explicitly mutated. Output columns can be specified

using the mutate() argument .keep.

Note that in base R dialect we have could have used: with(Loblolly, plot(age, height *
0.3048, ylab = 'Height (m)', xlab = 'Age (yrs)')) on line 6. However, this is quite

a bit harder to decipher. The function plot()will be formally introduced in Ch 6.

library(magrittr) # to access tee pipe

Loblolly |>
select(c(age, height)) |>
mutate(height = height * 0.3048) %T>%
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plot(., ylab = "Height (m)", xlab = "Age (yrs)") |>
colMeans()

age height
13.0000 9.8647

Figure 5.3: Plot of loblolly pine height as a function of age, after converting height to meters.

�

5.4.8 across()

The dplyr function across() allows extensions similar to those in apply()wherein the same

function can be applied to all columns in the first argument of across(). Specifying the first
argument in across() as everything()would allow application of a function to all columns

in a dataframe.

Example 5.13.

Here we take the medians of the quantitative columns in Loblolly using across() and

summarize().
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Loblolly |>
summarise(across(c(age, height), median))

age height
1 12.5 34

�

5.5 stringr

As evident in Section 4.3, use of regular expressions for matching, querying and substituting

strings can be confusing. The stringr package attempts to simplify some of these difficulties.

The stringr package uses processing tools from the package stringi (Gagolewski, 2022) for

pattern searching under a wide array of potential approaches. All stringr functions have the

prefix str_ and take a character string or string vector as the first argument.

Consider the vector of plant scientific names used to demonstrate string management in

Section 4.3.

names = c("Achillea millefolium", "Aster foliaceus",
"Elymus scribneri", "Erigeron rydbergii",
"Carex elynoides", "Carex paysonis",
"Taraxacum ceratophorum")

Example 5.14.

The function str_length() can be used to count the number of characters in a string.

str_length(names)

[1] 20 15 16 18 15 14 22

�

Example 5.15.

The function str_detect() tests for the presence or absence of a pattern in a string. Here I

test for "Aster" (the genus Aster).

str_detect(names, "Aster")

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Here are entries not containing Aster.
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str_detect(names, "Aster", negate = TRUE)

[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE

�

Example 5.16.

Here we subset names using the function stringr::str_subset() to obtain species within

the genus Carex.

str_subset(names, "Carex")

[1] "Carex elynoides" "Carex paysonis"

�

Example 5.17.

The function str_replace() is analogous to the base R function gsub(). It can be used to

replace text based on a pattern.

str_replace(names, "Carex", "C.")

[1] "Achillea millefolium" "Aster foliaceus"
[3] "Elymus scribneri" "Erigeron rydbergii"
[5] "C. elynoides" "C. paysonis"
[7] "Taraxacum ceratophorum"

�

Most stringr functions work with regular expressions (Section 4.3.6).

Example 5.18.

Here we count upper and lower case vowels with the function stringr::str_count() using
a pattern defined by the regex character class [AEIOUaeiou].

str_count(names, "[AEIOUaeiou]")

[1] 9 7 5 7 6 5 9

and use stringr::str_extract() to extract strings nine alphanumeric characters long, and

then sort the strings with a pipe.

str_extract(names, "[[:alnum:]]{9}") |>
sort()

[1] "elynoides" "foliaceus" "millefoli" "rydbergii" "scribneri" "Taraxacum"

�
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5.6 lubridate

Base R approaches for handling date-time data are described in Section 4.4. The package

lubridate (https://lubridate.tidyverse.org/) contains functions for simplifying and extending

some of these operations.

Example 5.19.

As an example dataset, I will use the time series used to illustrate date-time classes in Section

4.4.

dates <- c("08/13/2019 04:00", "08/13/2019 06:30", "08/13/2019 09:00",
"08/13/2019 11:30", "08/13/2019 14:00", "08/13/2019 16:30",
"08/13/2019 19:00", "08/13/2019 21:30", "08/14/2019 00:00",
"08/14/2019 02:30", "08/14/2019 05:00", "08/14/2019 07:30",
"08/14/2019 10:00", "08/14/2019 12:30", "08/14/2019 15:00",
"08/14/2019 17:30", "08/14/2019 20:00", "08/14/2019 22:30",
"08/15/2019 01:00", "08/15/2019 03:30")

library(lubridate)

Wewill define the timezone to be timezone of our computer workstation.

tz <- Sys.timezone(location = TRUE)

The package lubridate contains data-time parsers that may be easier to use than the base

functions strptime and as.Date. For the current example, we note that the data are in

a month/day/year hour:minute format. So we can create a time series using the function

lubridate::mdy_hm.

date_lub <- mdy_hm(dates, tz = tz)
date_lub

[1] "2019-08-13 04:00:00 MDT" "2019-08-13 06:30:00 MDT"
[3] "2019-08-13 09:00:00 MDT" "2019-08-13 11:30:00 MDT"
[5] "2019-08-13 14:00:00 MDT" "2019-08-13 16:30:00 MDT"
[7] "2019-08-13 19:00:00 MDT" "2019-08-13 21:30:00 MDT"
[9] "2019-08-14 00:00:00 MDT" "2019-08-14 02:30:00 MDT"
[11] "2019-08-14 05:00:00 MDT" "2019-08-14 07:30:00 MDT"
[13] "2019-08-14 10:00:00 MDT" "2019-08-14 12:30:00 MDT"
[15] "2019-08-14 15:00:00 MDT" "2019-08-14 17:30:00 MDT"
[17] "2019-08-14 20:00:00 MDT" "2019-08-14 22:30:00 MDT"
[19] "2019-08-15 01:00:00 MDT" "2019-08-15 03:30:00 MDT"

Other lubridate parsers include ymd(), ymd_hms(), dmy(), dmy_hms(), and mdy(). The lubri-
date parsers can often handle mixed methods of data entry. From the ymd() documentation

we have the following example:

https://lubridate.tidyverse.org/
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x <- c(20090101, "2009-01-02", "2009 01 03", "2009-1-4",
"2009-1, 5", "Created on 2009 1 6", "200901 !!! 07")

ymd(x)

[1] "2009-01-01" "2009-01-02" "2009-01-03" "2009-01-04" "2009-01-05"
[6] "2009-01-06" "2009-01-07"

�

Lubridate also allows extended mathematical operations for its date-time objects with the

functions duration(), period(), and interval().

Example 5.20.

Duration functions include dseconds(), dminutes(), ddays(), and dmonths().

duration("12m", units = "seconds") # seconds in 1 year

[1] "31557600s (~1 years)"

dmonths(12)

[1] "31557600s (~1 years)"

date_lub[1]

[1] "2019-08-13 04:00:00 MDT"

date_lub[1] + ddays(1)

[1] "2019-08-14 04:00:00 MDT"

�

Example 5.21.

Periodic functions include seconds(), minutes(), hours(), and days().

days(12) + minutes(2) + seconds(3)

[1] "12d 0H 2M 3S"

date_lub[1]

[1] "2019-08-13 04:00:00 MDT"

date_lub[1] - days(12)

[1] "2019-08-01 04:00:00 MDT"



5.7. RESHAPE2 165

�

Example 5.22.

Interval functions include int_length(), int_start(), and int_end().

int <- interval(start = first(date_lub), end = last(date_lub))

int_length(int) |>
duration()

[1] "171000s (~1.98 days)"

�

5.7 reshape2

Tidyverse functions generally require that data are in a long table format. That is, data are

stored with columns containing all the values for a particular variable of interest. Unfortu-

nately, this format is not conventional formany scientific applications, particularly longitudinal

studies that follow experimental units over time. Thesewill often have awide table format. The

tidyverse reshape2 package contains several functions for converting dataframes from wide to

a long table formats, including the functions reshape2::melt() and tidyr::gather(). The
reshape2::melt.data.frame() function generates a value column based on data common-

alities of outcomes given in a variable or variables defined in the id argument. A remaining

column, if any, that captures these commonalities will be given the name variable. The names

of the value and variable output columns can be changed with the arguments value.name
and variable.name, respectively.

Example 5.23.

Consider the asbio::asthma dataset, which has a wide table format. The dataset documents

the effect of three respiratory treatments (measured as Forced Expiratory Volume in one

second (FEV1)) for 24 asthmatic patients over time (11H - 18H, i.e, hour 11 to hour 18). A

baseline measure of FEV1 (BASEFEV1) was also taken 11 hours before application of the

treatment.

data(asthma)
head(asthma)

PATIENT BASEFEV1 FEV11H FEV12H FEV13H FEV14H FEV15H FEV16H FEV17H FEV18H
1 201 2.46 2.68 2.76 2.50 2.30 2.14 2.40 2.33 2.20
2 202 3.50 3.95 3.65 2.93 2.53 3.04 3.37 3.14 2.62
3 203 1.96 2.28 2.34 2.29 2.43 2.06 2.18 2.28 2.29
4 204 3.44 4.08 3.87 3.79 3.30 3.80 3.24 2.98 2.91
5 205 2.80 4.09 3.90 3.54 3.35 3.15 3.23 3.46 3.27
6 206 2.36 3.79 3.97 3.78 3.69 3.31 2.83 2.72 3.00
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DRUG
1 a
2 a
3 a
4 a
5 a
6 a

library(reshape2)
asthma.long <- asthma |> melt(id = c("DRUG", "PATIENT"),

value.name = "FEV1",
variable.name = "TIME")

# here I simplify the names in the TIME variable
asthma.long$TIME <- factor(asthma.long$TIME,

labels = c("BASE",
paste("H", 11:18, sep = "")))

head(asthma.long)

DRUG PATIENT TIME FEV1
1 a 201 BASE 2.46
2 a 202 BASE 3.50
3 a 203 BASE 1.96
4 a 204 BASE 3.44
5 a 205 BASE 2.80
6 a 206 BASE 2.36

In the code above, the function reshape2::melt() is used to convert to a long table format,

and time designations are simplified using the base function factor(). The factor() function
can be used to create a categorical variable with particular levels (Section 3.3), or to change

the names of levels. The latter application is used here.

�

Exercises

1. Create a tibble from the Downs dataframe shown below. The data comprise part of a

report summarizing Down’s syndrome cases in British Columbia, compiled by the British

Columbia Health Surveillance Registry (Geyer, 1991).

(a) Examine both the original Downs dataframe and the tibble representation of Downs
by printing them. Do we gain additional information from the tibble?

(b) Find the mean and variance of the Age column from the Downs dataset using pipes
and dpylr functions.
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Downs <- data.frame(Age = c(17, 20.5, 21.5, 29.5, 30.5, 38.5, 39.5,
40.5, 44.5, 45.5, 47),

Births = c(13555, 22005, 23896, 15685, 13954,
4834, 3961, 2952, 596, 327, 249),

Cases = c(16, 22, 16, 9, 12, 15, 30, 31, 22, 11,
7)

)

2. Bring in the world.emissions dataset from package asbio.

(a) Using the forward pipe operator, |>, and filter() from dplyr, create a dataframe

of just US data.

(b) Using |>, filter(), and summarise(), find the first and last year of emissions data

for the US.

(c) Using |>, %T>%, filter(), mutate(), and plot(), plot per capita CO2 emissions

for the US by year (as an intermediate pipeline step) and find the maximum CO2
emission level. Hint: see Exercise 5.12.

(d) Using |> and filter() create a new dataframe called no.repeats that eliminates

rows with the entry "redundant" in the world.emissions$continent column.

(e) With the no.repeats dataframe and the functions group_by(), and summarise(),
get mean CO2 levels for each country over time.

(f) Using |>, group_by(), summarise() and slice_max(), identify the 10 countries

with the highest recorded cumulative CO2 emissions.

3. Consider the character vector omics below (Bonnin, 2021).

(a) Use stringr::str_detect() to test for strings with the pattern "genom".
(b) Using str_detect(), test for strings startingwith the pattern "genom" by using

an extended regular expression: ^genom in the str_detect() argument pattern
(see Section 4.3.6.1).

(c) Using str_detect(), test for strings endingwith the pattern "omics" by using an
extended regular expression (see Section 4.3.6.1).

(d) Using str_subset(), subset the string vector omics to string entries containing
the pattern "genom".

(e) Using str_replace(), replace the text "omics"with "ome".

omics <- c("genomics", "proteomics", "proteome",
"transcriptomics", "metagenomics", "metabolomics")

4. Consider the character vector times below, which has the format: day-month-year
hour:minute:second.
(a) Convert times into a lubridate date-time object using an appropriate lubridate

function.

(b) Add two days and seven seconds to each entry in time using lubridate::days.
(c) Using lubridate functions, find the difference, in seconds, between the beginning

and the end of the time series.
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times <- c("12-12-2023 12:12:20",
"12-01-2021 01:12:40",
"15-10-2021 23:10:15",
"25-07-2022 13:09:45")



Chapter 6

Base Graphics

“Mankind invented a system to cope with the fact that we are so intrinsically lousy

at manipulating numbers. It’s called the graph.”

- Charlie Munger, businessman and philanthropist

6.1 Introduction

An important feature ofR is its capacity to create publication-quality graphicswith tremendous

user flexibility. R graphics are relatively non-interactive, and follow the painters model in

which later output obscures earlier overlapping output. Thus, “removal” of a graphical feature

requires the creation of an entirely new plot. This may feel like a major departure for those

used to point-and-click graphics, characteristic of software like Excelr and SigmaPlotr.

There are two general graphics approaches in R: base graphics and grid graphics (Murrell,

2019). Base graphics are applied using the R distribution package graphics, whereas the

grid graphics system relies on low level facilities in the R distributed grid package, which are

generally implemented via high level functions in other packages. The base and grid graphics

systems generally do not interact well, although both rely on the distributed grDevices package

which provides the fundamental infrastructure for R graphics, including graphical devices.

The base graphics system is the focus of this chapter. The grid system, and its most popular

adherent, the package ggplot2, is described in Chapter 7.

6.2 Simple Base Graphics Examples

The base graphics system allows creation of a wide variety of plots for single variables and

multiple variables (see Figs 6.1 and 6.2, respectively). Approaches for making many of these

example plots are elaborated later in this chapter.

169
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plot(num) plot(tab) barplot() or plot(fac)

pie(num)
dotchart(num)

boxplot(num)

rp

F
re

qu
en

cy

hist(num)                       stripchart() or plot(~num)

  0.0 | 7
  0.1 | 012
  0.2 | 8
  0.3 | 014
  0.4 | 0013
  0.5 | 01129
  0.6 | 005
  0.7 | 00048
  0.8 | 9

stem(num)

Figure 6.1: Base graphics approaches for single variables. Figure follows Murrell (2019).

Classes of plotted objects are distinguished by name and color in main headings: num =

numeric, tab = table, fac = factor. By row, from left to right, graphics are: 1) a scatterplot

created by applying the function plot() to a vector of class numeric, 2) the plot() function
applied to a one-dimensional object of class table, resulting in a distributional plot, 3) a

barplot, useful for comparing categorical outcomes, 4) a *pie chart*, 5) a extitdotchart, which

provides a dot variant of a bar plot), 6) a extitboxplot, i.e., the interquartile range (hinges)

and whiskers delimiting outliers, 7) a histogram (the most common graphical distributional

summary), 8) a stripchart, i.e., a one dimensional scatter plot that provides a horizontal view

of distributional outcomes, and 9) a stem chart.
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plot(num, num)

n

n

                   smoothScatter(mat )

n

n

                  sunflowerplot(mat)

n

n

plot(fac, num)

n

n

barplot(mat)

n

n

barplot(mat, beside = T)

1

2

n

n

dotchart(mat)

n

n

plot(num, fac)

n

n

spineplot() or plot(fac, fac)

Figure 6.2: Base graphics approaches for consideringmultiple variables. Figure followsMurrell

(2019). Classes of plotted objects are distinguished by name and color in main headings:

num = numeric, mat = matrix, fac = factor. By row, from left to right, graphics are: 1) a

scatterplot based on two numeric variables, 2) a scatterplot with smoothed densities, , based

on a two-column numeric matrix, 3) a sunflower plot, which uses special symbols to indicate

overplotting of points, based on a two-column numeric matrix, 4) a boxplot based on a factor
(with two levels) and a numeric variable, 5) and 6) stacked and beside barplots based on a

numeric matrix, 7) a dotchart, 8) a stripchart, based on two numeric variables, and 9) a

spineplot, a special cases of a extitmosaic plot (obtained using mosaicplot()), representing a
generalization of a stacked (or highlighted) bar plot.
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6.2.1 plot()

The workhorse of base graphics is the function plot(). From Figs 6.1 and 6.2 it is evident that

plot() can be used in a number of different ways, depending on the characteristics of data

being plotted. For example, if data are two numeric vectors, then a conventional scatterplot

is created. However, if the first two arguments in plot() call a numerical vector and a factor

vector (in that order), then a boxplot is created, and if the first two arguments in plot() call a
factor vector and a numeric vector (in that order), then a stripchart is created. Further, plotting

methods for particular classes of objects can be designed that can be implemented by calling

plot(). For instance, the dendrogram in Fig 6.3 was created using a plotting method called

plot.agnes(), designed for objects of class agnes1. However, the function can be run using a

generic call to plot(). See Ch 8 for additional details on plotting methods for R classes.

library(cluster)
aa.ga <- agnes(animals, method = "average")
plot(aa.ga, sub = "", main = "", which.plots = 2, xlab = "")

1An object class resulting from hierarchical agglomerative cluster analyses produced by the function

cluster::agnes.
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Figure 6.3: Dendrogram of an average linkage classification of animals based on six variables:

warm vs. cold blooded, ability to fly, vertebrate or invertebrate, whether or not the animal is

endangered, whether or not the animal lives in groups, and whether or not the animal has hair.

The plotting function used, plot.agnes(), is called using the generic name plot().

By default, the function plot() creates a projection at user defined Cartesian coordinates.

Under this usage plot() has only two required arguments.

• x defines the x-coordinate values.
• y defines the y-coordinate values.

If coordinates for only one dimension, x are supplied, then x is plotted on the vertical axis

against the series 1 ∶ 𝑛, where 𝑛 is the number of points in x. A coordinate system can also be

supplied to the argument x in the form of a formula, list, matrix, or dataframe.

Important optional arguments include the following:

• pch specifies the symbol type(s), i.e., the plotting character(s) to be used.

• col defines the color(s) to be used with the symbols.

• cex defines the size (character expansion) of the plot symbols and text.
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• xlab and ylab allow the user to specify the x and y-axis labels.

• type allows the user to define the type of graph to be drawn. Possible types are "p"
for scatterplot points (the default), "l" for a line plot, "b" for both, "c" for the line

component of "b", "o" for overplotted, "h" for ‘histogram’ like vertical lines (see middle

plot in top row of Fig 6.1), "s" for stair steps, and n" for no plotting.

Example 6.1.

We can see some symbol and color alternatives by calling them in plot() (Fig 6.4).

1 plot(1:20, 1:20, pch = 1:20, col = 1:20,
2 ylab ="Symbol number",
3 xlab = "Color number",
4 cex = 1.6, cex.lab = 1.1, cex.axis = 1.1)

5 10 15 20

5
10

15
20

Color number

S
ym

bo
l n

um
be

r

Figure 6.4: Some symbol and color plotting possibilities in plot().

In Line one from the code above, the x and y coordinates are both sequences of numbers from

1 to 20 obtained from the command 1:20. I varied symbol colors and plotting characters
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(col and pch, respectively) using 1:20 as well. Thus, the combination col = 1 and pch = 1
results in a black open circle, whereas the combination col = 20, pch = 20 results in a blue

filled circle. Note that we need to enclose the axis names in quotations for R to recognize them
as text. Symbol numbers 21-26 allow background color specification using the argument bg.
Many other symbol types are also possible.

�

6.3 Graphical Devices

Graphics inR are createdwithin graphics devices, encoded in the package grDevices. These vary

with respect to storage modes, display modes, available typefaces, and other characteristics.

In a basic R download, six graphics devices will be available:

• windows() is available for Windows releases of R. It provides on-screen rendering of

graphics2, and creates Windows metafile graphics files.

• pdf() renders graphics into .pdf files.
• postscript() renders graphics into PostScript, .ps, graphics files.
• xfig() renders graphics files using the Xfig graphics file format.

• bitmap() renders graphics into bitmap graphics files It requires the open source soft-

ware ghostscript.

• piktex()Writes TeX/PicTeX graphics commands to a file and is of historical interest

only.

A number of other graphics devices also exist, although they may return a warning if Rwas

not compiled to use them upon installation.

• cairo_pdf(), cairo_ps() and svg() are PDF, PostScript SVG (Scalar Vector Graphics)

devices based on the open source Cairo graphics.

• bmp(), jpeg(), png(), and tiff() render graphics as .bmp, .jpg, .png, and .tif bitmap

files, respectively.

• X11() is the graphics device for the X11 windowing system, and is commonly used in

Unix-alike operating systems, including MacOS.

• quartz() is only functional on MacOS and supports plotting to the screen (default) and

to various graphics file formats. The device requires the open source software XQuartz

for rendering some R graphical user interfaces (see Ch 11).

Multiple devices (currently up to 63) may exist simultaneously in an Rwork session, although

there will only be one active device. To find the current (active) graphics device can type

dev.cur(). I get:

2RStudio has its own native on-screen graphics device. A non RStudio graphics device can be opened (within

RStudio) using dev.new(RStudioGD = FALSE).

https://www.ghostscript.com/
https://www.cairographics.org/
https://www.xquartz.org/
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dev.cur()

pdf
2

R tells me there are two devices open. The current device is a Windows device. The second

device is the so-called “null device.” The null device is always open but only serves as a

placeholder. Any attempt to use it will open a new device in R. Occasionally, on purpose or by

accident, all graphics devices (except the null device) may become turned off. A new active

graphics device can be created at any time by typing:

dev.new()

One can close the current (active) device using:

dev.off()

The active device can be changed using the function dev.set(). For instance, if there were

three or more accessible devices, and one wished to define device three as the active device,

one could type:

dev.set(3)

It is possible to scroll through graphics devices using keyboard shortcuts. Specifically, let 𝑛 be

the current device number, then the combination Ctrl + Alt + F11 (Windows or Linux) or Cmd

+ Alt + F11 (Mac) shows device 𝑛 − 1, whereas Ctrl + Alt + F12 (Windows or Linux) or Cmd +

Alt + F12 (Mac) shows device 𝑛 + 1.

6.4 par()

Parameters for a graphics device (which may contain several plots) can be accessed and

modified using the function par(). Below are important arguments for par(). Some of these

can also be specified as arguments in plot(), with different results.

• bg gives the background color for the graphical device. When used in plot() it gives
the background color of plotting symbols.

• bty is the box-type to be drawn around the plots. If bty is one of "o" (the default), "l",
"7", "c", "u", or "]" the resulting box resembles the corresponding upper case letter.

The value "n" suppresses the box.
• fg gives the foreground color.

• font is an integer that specifies the font typeface. 1 corresponds to regular text (the

default), 2 to bold face, 3 to italic and 4 to bold italic.

• las is the style of axis labels: 0 always parallel to the axis (default), 1 always horizontal,
2 always perpendicular to the axis, 3 always vertical.

• marwill have the form c(bottom, left, top, right) and gives the number of lines

of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2) +
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0.1.
• mfrowwill have the form c(number of rows, number of columns) and the number

and position of plots in a graphical layout. Multiple graphs can also be placed into a

graphical device with additional control over plot designation to multiple elements in a

row and column configuration, using the function layout().
• oma specifies the outer margins of a graphical device, given multiple plots, using a vector

using a matrix of the form: c(bottom, left, top, right).
• usrwill have the form c(x1, x2, y1, y2) giving the extremes of the user coordinates

of the plotting region.

When setting graphical parameters, it is good practice to revert back to the original parameter

values. Assume that I want to background of the graphics device to be black. To set this I would

type:

old.par <- par(no.readonly = TRUE) # save default, for resetting...
par(bg = "black") # change background parameter

To return to the default settings for background I would type:

par(old.par)

Defaults will also be reset by closing the current graphics device, or by opening a new device.

For instance, using dev.new().

Other fundamental properties of the default graphics device, such as device height, width and

pointsize, can be adjusted using the dev.new() function. For instance, to create a graphical
device 9 inches wide, and 4 inches high, I would type:

dev.new(width = 9, height = 4)

Example 6.2.

Fig 6.5 shows an example of applying background and foreground colors using the bg and fg
arguments in par(), respectively. Note also the specification of a bold font using the par()
argument font = 3, and expansion of all graphics parameters to slightly larger than their

original size, using cex = 1.1.

1 old.par <- par(no.readonly = TRUE)
2 par(bg = "black", fg = "white", font = 3, cex = 1.1)
3 plot(1:10, 1:10, xlab = "x", ylab = "y",
4 col.lab = "white")
5 par(old.par)
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2 4 6 8 10

2
4

6
8

10

x

y

Figure 6.5: Use of par() to change background and foreground graphical parameters.

�

Example 6.3.

Fig 6.6 shows how one can place multiple graphs into a single graphical device using the mfrow
argument in par(), and control figure margins using the par() argument mar (Line 2). It also
shows some basic plot types resulting from the type argument in plot() (Lines 4-7).

1 old.par <- par(no.readonly = TRUE)
2 par(mfrow = c(2,2), cex = 1.1, mar = c(4,4,1,1))
3 x <- 1:10; y <- sort(rnorm(10))
4 plot(x, y)
5 plot(x, y, type = "l")
6 plot(x, y, type = "o")
7 plot(x, y, type = "h")
8 par(old.par)
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Figure 6.6: Use of par() to place multiple graphs into a single graphical device. The figure also

demonstrates basic plot types, specified using the plot() argument type. Clockwise from the

top-left these are: 1) a point plot (scatterplot), 2) a line plot, 3) a histogram-like (high density

line) plot, and 4) a plot with a both points and lines.

�
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6.5 Exporting Graphics

To export R graphics, one can generally copy snapshots to a clipboard using pull down menus

on graphical device. These can then be pasted into programs (e.g., word processors) as bitmaps

(a spatially mapped array of bits) or metafiles, a generic term for a file format that can store

multiple types of (generally graphical) data.

To create the best possible graphs, however, one should save device output using graphical

device functions.

For instance, to save a graphics device image as a pdf under the file name example.pdf in the

working directory I would type:

pdf(file ="example.pdf")

I would then make the plot, for instance

plot(1:10)

The plot will not be shown because the png() graphical device is engaged. As a final step I

close the device.

dev.off()

The graphics file will now be contained in the working directory. If the file argument is

unspecified, pdf()will save a file called Rplot.pdf.

By default, the bitmap graphics formats: BMP, JPEG, PNG, and TIFF, have a width and height

of 480 pixels, and a “large” point size (1/72 inch) in R. This results in a rather coarse 72 ppi

(72 points per inch) image resolution. However, changing the res (resolution) argument in a

graphical device function without changing the pointsize, or height and width arguments will

generally result in unusable figures.

Because 500 ≈ 72 ⋅ 6, one can generate a TIFF with greater than 400 ppi TIFF called fig1.tiff
by typing:

tiff("fig1.tiff", res = 72 * 6, height = 480 * 6, width = 480 * 6)
plot(1:10)
dev.off()

With respect to graphical formats, documentation in the grDevices package states:

“The PNG format is lossless3 and is best for line diagrams and blocks of color. The

JPEG format is lossy4, but may be useful for image plots, for example. The BMP for-

mat is standard on Windows, and supported by most viewers elsewhere. TIFF is a

meta-format: the default format written by the default format tiff(compression

3Lossless entails data compression without loss of information.
4Lossy refers to data compression in which unnecessary information is discarded.
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= none) is lossless and stores RGB values uncompressed. Such files are widely

accepted, which is their main virtue over PNG.”

The svg(), cairo_pdf() and cairo_ps() graphical devices apply cairographics and will

recognize a largenumberof symbols and fonts not available for document and image generation

in the default setting of the Windows PostScript and PDF devices.

6.6 text(), points(), and lines()

The functions text(), points() and lines() can be used to overlay text, points and lines in

a plot, respectively. As with plot() the first two arguments of these functions are the x and y

coordinates for the plotted entities. Other arguments concern characteristics of the plotted

items. For instance, to plot the text "example"with in an existing plot, at plot coordinates x =
0, y = 0, with a large character expansion, I could type:

plot(-1:1, -1:1, type = "n", axes = F, xlab = "", ylab = "") # empty plot
text(x = 0, y = 0, "example", cex = 9)

The result is shown in Fig 6.7.

example
Figure 6.7: Empty plot (even axes are suppressed) with text overlain.

The function paste() can be used to concatenate elements from text strings in plots or output.

For instance, try:

a <- c("a", "b", "c")
b <- c("d", "e", "f")
c <- paste(a, b)
c

[1] "a d" "b e" "c f"

Which can be placed in a plot (Fig 6.8) using text().

plot(-1:1, -1:1, type = "n", axes = F, xlab = "", ylab = "")
text(x = 0, y = 0, paste(c, collapse = ' '), cex = 2)

a d b e c f
Figure 6.8: An empty plot with text overlain. Note the use paste(c, collapse = ' ') to
collapse the string vector c into a single entity.
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To plot a dashed line between the points (0, 0) and (3, 2), I would type:

lines(x = c(0, 3), y = c(0, 2), lty = 2)

or

points(x = c(0, 3), y = c(0, 2), lty = 2, type = "l")

The result is shown in Fig 6.9.

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

Figure 6.9: Plot with dashed line overlain.

To place a large, blue, triangle with red outline at the point (1, 1), of an existing plot I would

type:

points(x = 0, y = 1, pch = 24, col = 2, bg = 4, cex = 8)

The resulting plot is shown in Fig 6.10.
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Figure 6.10: Plot with point overlain.

6.6.1 Plotting Mathematical Text

R has useful functions for the plotting of mathematical expressions. These include the Greek

letters, mathematical operators, italicization, and sub- and super-scripts. mathematical text

is generally called as an expression in the text argument in the functions text() or mtext().
For example, the formula for the sample variance is overlain in Fig 6.11.

plot(-1:1, -1:1, type = "n", axes = F, xlab = "", ylab = "")
varexp <- expression(over(sum(paste("(",italic(x[i] - bar(x)),")"^2),

italic(i)==1, italic(n)),(italic(n) - 1)))

text(x = 0, y = 0, varexp, cex = 3)

∑
i=1

n
(xi − x)2

(n − 1)
Figure 6.11: Empty plot with formula for the sample variance overlain. Type ?plotmath for
more information.
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6.6.2 mtext()

To place text in the margin of a plot we can use the function mtext(). As its first argument the

mtext() function requires a character string to be written into the plot. The 2nd argument,

side defines the plot margin to be written on: 1 = bottom, 2 =left, 3 = top, 4 = right. For

instance, to place the text "Axis 2" on the right hand axis of an existing plot, I would type:

mtext("Axis 2", 4)

6.7 Geometric Shapes

Geometric shapes can be drawn using a number of functions including rect() (which draws

rectangles) and polygon() (which draws other polygons) based on user-supplied vertices.

For instance, to place a purple rectangle with vertices at (1, 1), (1, 2), (2, 2), and (2, 1), in an

existing plot, I would type:

rect(xleft = 0, ybottom = 1, xright = 2, ytop = 2, col = 6)

See Fig 6.12.

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

Figure 6.12: Plot with rectangle overlain.

6.8 axis()

The function axis() can be used to create new axes on a plot or to customize axis characteris-

tics. Its first argument (side) specifies the side of the plot that the new axis will occupy 1 =
bottom, 2 =left, 3 = top, 4 = right.
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For instance, to create a right hand axis I would type:

axis(4)

Other important axis() arguments include a vector of axis labels (argument labels), and
the locations of labels (argument at).

Example 6.4.

Here I create customized axes with rotated, 𝑥-axis labels, using axis() and text() (Fig 6.13).

1 plot(1:3, type = "n", axes = F, xlab = "", ylab = "")
2 axis(side = 2, at = 1:3, col = "red")
3 axis(side = 1, at = 1:3, labels = FALSE, col = "blue")
4 text(1:3, rep(.65, 3), c("Label 1", "Label 2", "Label 3"),
5 srt = 50, xpd = TRUE)

1
2

3

La
be

l 1

La
be

l 2

La
be

l 3

Figure 6.13: Modifying axes with axis().

The argument srt = 50 (Line 5) rotates the text 50 degrees (srt cannot be specified in
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mtext() or axis(), hence the use of text() here). The specification xpd = TRUE in text()
(Line 5) allows text printing to extend to the plot axis margins.

�

6.9 Font Typefaces

Font typefaces can be changed using a number of graphical functions, including par(), via
the argument family. The general typeface families: "serif", "mono", and "sans", and the

Hershey family of fonts (type ?Hershey for more information) are transferable across all

graphics devices employed in R. To change the font in a graphical device from the default sans

serif (similar to Arial) to serif (similar to Times New Roman) one could type:

par(family = "serif")

To use a Courier-type monospace font one would use.

par(family = "mono")

Many other typeface families are possible, although they may not be transportable to all

graphical devices and graphical storage formats.

Example 6.5.

In the code below I bring in a large number of conventional font families using a function from

the Foundational and Applied Statistics for R website. These typefaces (and many others) will

typically be available on Windows platformmachines, although not all will be supported by

non-Windows graphics devices. The result can be seen in Figure 6.14 which displays text from

ninety-nine Windows typefaces.

1 source(url("https://amalgamofr.org/win_fonts.R"))
2 png("fonts.png", res = 72 * 6, height = 480 * 6, width = 480 * 6)
3 x <- rep(c(2.8, 6.4, 9.6), each = 33)
4 y <- rep(seq(10, 0.25, by = -.2965), 3)
5 font.type <- paste(rep("f", length(fonts)), 1:length(fonts), sep = "")
6 par(mar = c(0.1,0.1,0.1,0.1), cex = 1.05)
7 plot(0:10, type = "n", xaxt= "n", yaxt = "n", xlab = "", ylab = "",
8 bty = "n")
9

10 for(i in 1:length(fonts)){
11 text(x[i],y[i], labels=fonts[i] , family = font.type[i])
12 }
13 dev.off()

http://en.wikipedia.org/wiki/Hershey_font
http://http//www2.cose.isu.edu/~ahoken/book/


188 CHAPTER 6. BASE GRAPHICS

Figure 6.14: Examples of font families that can be used in R graphics.

Note that on Line 2 in the code above, I use the function png() to generate a high resolution

.png graphical file. Thus, running the entirety of the preceding code chunk will create the

image file fonts.tiff in your working directory. To save myself from typing an inordinate

amount of code, I use a for loop (see Ch 8) to place the fonts one at a time in the graphics device

(Lines 9-11). Output from closing the graphical device is shown on Line 14-15.

Importantly, the typefaces imported on Line 1 in the chunk above will now be available for

graphics functions using the Windows graphical device. To see the first six available Windows

fonts one can type:

head(windowsFonts())

$serif
[1] "TT Times New Roman"

$sans
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[1] "TT Arial"

$mono
[1] "TT Courier New"

$f1
[1] "Agency FB"

$f2
[1] "Albany AMT"

$f3
[1] "ALGERIAN"

Similarly, one can see the available fonts for PostScript and PDF graphics devices using:

head(names(pdfFonts()))

[1] "serif" "sans" "mono" "AvantGarde" "Bookman"
[6] "Courier"

�

6.10 Colors

An enormous number of color choices for R graphics are possible and these can be specified

in at least six different ways.

• First, we can specify colors with integers as I did in Figure 6.4. Additional varieties

can be obtained by drawing color elements from the function colors() using

colors()[number] (Fig 6.15).

e <- expand.grid(1:20, 1:32)
plot(e[,1], e[,2], bg = colors()[1:640], pch = 22, cex = 2.5, xaxt = "n",

yaxt = "n", xlab = "", ylab = "")
text(e[,1], e[,2], 1:640, cex = .4)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

Figure 6.15: Color choices from colors()

The function expand.grid() creates a dataframe from all combinations of user-supplied

supplied vectors. Note that these combinations are used as coordinates in plot().

• Second, we can specify colors using actual color names, e.g., "white", "red",
"yellow". For a visual display of essentially all the available named colors in R type:

example(colors).

• Third, we can define colors by requesting red green and blue (RGB) color intensities,

along with transparency, using the function rgb() (Fig 6.16). Usable light intensities
can be made to vary individually from 0 to 255 (i.e., within an 8 bit format). Thus, there

are 2554 = 4, 228, 250, 625 possible rgb() color combinations. By default, red green,
blue, and alpha (transparency) arguments in rgb() are defined to be in (0, 1).

1 plot(1:10, cex = 15, pch = 19, xlab = "", ylab = "",
2 col = rgb(red = rep(0.2,10), green = rep(0.5,10),
3 blue = rep(0.8,10),
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4 alpha = seq(0.05,1, length = 10)), axes = F)
5 box()

Figure 6.16: Demonstration of rgb(), emphasizing changes in transparency.

Note the use of box() on Line 5, which places a box around the plot.

• Fourth, similar to rgb(), we can specify colors using the function hcl()which controls

hues, chroma, and luminescence and transparency (see Fig 6.17).

• Fifth, we can define colors using hexadecimal codes5, e.g., blue = "#0000FF".

• Sixth, we can specify colors using palettes. Figure 6.17 shows six pie plots. Each pie

plot uses a different pre-defined color palette. Each pie slice from each pie represents a

distinct segment of a distinct palette.

1 layout(matrix(seq(1,6),3,2))
2 par(mar=c(1,1,1,1))
3 pie(rep(1,12), col = rainbow(12), main = "Rainbow colors")
4 pie(rep(1,12), col = heat.colors(12), main = "Heat colors")
5 pie(rep(1,12), col = topo.colors(12), main = "Topographic colors")
6 pie(rep(1,12), col = gray(seq(0,1,1/12)), main = "Gray colors")
7 pie(rep(1,12), col = hcl(h=seq(180,0, length=12)),
8 main = "Cols from hcl hue")

5A data coding system that uses 16 symbols: the numbers 1-9, and the letters A-F. Hexadecimals are primarily

used to provide a more intuitive representation of binary-coded values (see Ch 12).
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9 pie(rep(1,12), col = hcl(h=seq(360,180,length=12)),
10 main = "Cols from chroma")
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Figure 6.17: Examples of color palettes in R. Numbers do not correspond to actual color type

designations.

Note that the functions rainbow(), heat.colors(), topo.colors() (Lines 3-6) only require
an integer specification requesting the number of colors within a particular palette. For

instance
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rainbow(5)

[1] "#FF0000" "#CCFF00" "#00FF66" "#0066FF" "#CC00FF"

Note that the colors in rainbow() are given in a hexidecimal format.

The function palette() can be used to check and define a number of useful palettes. Colors

in the current palette can be obtained by typing:

palette()

[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
[8] "gray62"

A list of predefined palettes in palette() can be obtained by typing:

palette.pals()

[1] "R3" "R4" "ggplot2"
[4] "Okabe-Ito" "Accent" "Dark 2"
[7] "Paired" "Pastel 1" "Pastel 2"
[10] "Set 1" "Set 2" "Set 3"
[13] "Tableau 10" "Classic Tableau" "Polychrome 36"
[16] "Alphabet"

To define the current palette to be the one used by the ggplot2 package (Ch 7), I could type:

palette("ggplot2").

A large number of useful pre-defined palettes (including color-blind-safe palettes) can be

obtained using the package RColorBrewer (Fig 6.18).

library(RColorBrewer)
display.brewer.all(n = 7, colorblindFriendly = TRUE)
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Figure 6.18: RColorBrewer color-blind-safe, seven category palettes. Top palettes are so-called

’sequential’ palettes, middle palettes are ’qualitative’, and bottom palettes are ’divergent’.

Here are the hexadecimal names for the “Set2” palette chunks in Figure 6.18.

brewer.pal(7, "Set2")

[1] "#66C2A5" "#FC8D62" "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F" "#E5C494"

Customized palettes can be generated using the colorRamp() function which returns

functions that “interpolate a set of given colors to create new color palettes.” Important

colorRampPaltette() arguments include: two required arguments.

• colors defines colors to interpolate.
• bias a positive number that controls distinctions among interpolated colors. Larger

values indicated greater differences.

• space one of "RGB" or "Lab", indicating whether RGB or CIELAB6 color spaces are to be

used in interpolations.

6The CIELAB color space is defined by three values: L* for perceptual lightness and a* and b* for the four
unique colors of human vision: red, green, blue and yellow. (Schanda, 2007). The CIELAB space is intended to be

perceptually uniform. CIELAB and several other colors spaces are included in the encompassing CIECAM02 color

space (Wikipedia, 2024d).
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Here I generate and plot a 15 color palette interpolated from the colors red and blue (Fig 6.19).

1 crp <- colorRampPalette(colors = c("red", "blue"))(15)
2 plot(1:15, pch = 19, cex = 5, col = crp, axes = F, xlab = "", ylab = "")
3 box()

Figure 6.19: Color palette generated by the function colorRampPalette().

The function box() (Line 3) places a box around the figure whose axes and axis labels I have

intentionally omitted. There are a number of packages for the generation of customized

palettes. My current favorite is colorspace and its interactive function hclwizard(), which

generates the shiny GUI (Ch 11) shown in Fig 6.20.
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Figure 6.20: A GUI for constructed customized palettes generating by the function

colorspace::hclwizard().

6.11 Scatterplots

Scatterplots project points at the intersection of paired observations describing two quantita-

tive variables. Thus, scatterplots are often presented in conjunction with simple regression

analyses (Aho, 2014).

Example 6.6.

As an example of scatterplot creation wewill use the Loblolly dataset in the package datasets.
Figure 6.21 allows visualization of the relationship of loblolly pine tree age and tree height

(also see Example 5.12).

with(Loblolly, plot(age, height))
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Figure 6.21: Scatterplot of height and age from the Loblolly pine tree dataset.

Now let’s fit a simple linear regression for loblolly pine height as a function of age. A regression

line will show the best possible linear fit for a response variable as a function of an quantitative

explanatory variable (Aho, 2014). The R function for a linear model is lm(). It encompasses

and allows a huge number of statistical procedures, including regression (see Chs. 9-11 in

(Aho, 2014)). We have:

ha.lm <- lm(height ~ age, data = Loblolly)

Note that in the first argument of lm()we define height to be a function of age using the tilde
operator. Objects of class lm have their ownsummary function. This can be called by simply

typing:

summary(ha.lm)

Call:
lm(formula = height ~ age, data = Loblolly)

Residuals:
Min 1Q Median 3Q Max

-7.021 -2.167 -0.439 2.054 6.855

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) -1.3124 0.6218 -2.11 0.038 *
age 2.5905 0.0409 63.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.95 on 82 degrees of freedom
Multiple R-squared: 0.98, Adjusted R-squared: 0.98
F-statistic: 4e+03 on 1 and 82 DF, p-value: <2e-16

The output shows us the Y-intercept, -1.31240, and slope, 2.59052, of the fitted regression

line, and results from null hypothesis tests, along with a lot of other information.

The abline() function allows the plotting of a line over an existing plot. The first two argu-

ments for abline() are the Y-intercept and slope (Fig 6.22).

with(Loblolly, plot(age,height, pch=2, col=3))
abline(-1.312396, 2.590523)
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Figure 6.22: Scatterplot with fit overlain.

Note that we could have gotten the same result using abline(ha.lm).

Finally, we can overlay a 95% confidence interval for the true regression fitted value (see Aho

(2014), Ch 9) using the function predict.lm() (Fig 6.23)
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1 ci <- predict(ha.lm, interval = "confidence")
2

3 o <- order(Loblolly$age)
4 ageo <- Loblolly$age[o]
5 cio <- ci[o,]
6

7 with(Loblolly, plot(age, height, pch=19, col=1))
8 abline(-1.312396, 2.590523)
9 points(ageo, cio[,2], type = "l", col = "gray") # lower CI bound

10 points(ageo, cio[,3], type = "l", col = "gray") # upper CI bound
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Figure 6.23: Scatterplot with confidence interval for the true mean of 𝑦 given 𝑥, overlain.

The object ci, created on Line 1, is a dataframe containing fits, and corresponding lower and

upper confidence interval bounds. The ordering of 𝑥-axis values is established on Line 3

to allow creation of lines that look like functions of 𝑥. This ordering is applied to Cartesian

coordinates on Lines 4-5.

�

6.12 Transformations

Importantly, plot() allows straightforward application of log transformations to axes. For

instance, to apply a log𝑒 transformation to the 𝑥-axis or 𝑦-axis I could use log = "x" or log
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= "y", respectively (Fig 6.24).

with(Loblolly, plot(age, height, log = "y"))
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Figure 6.24: Graphical log𝑒 transformation of the height axis from a scatterplot of the

Loblolly pine tree dataset.

Example 6.7.

In this Example I will incorporate a number of the functions discussed so far, including par()
with usr(), mathematical formulae with text(), points(), shapes rending with rect()
which allows modification of plot backgrounds, colors() axis(), and mtext().

The dataframe C.isotope in package asbio describes variations in 𝛿14C over time in La Jolla

California. The term 𝛿14C describes the ratio of carbon 14 to carbon 12 (14C is unstable, while
12C is a stable isotope of carbon) compared to a standard ratio. We will create a figure with

four subplots, with the following characteristics:

• It will have dimensions 8” x 7”.

• The outer margins (in number of lines) will be bottom = 0.1, left = 0.1, top = 0, right = 0.

• The inner margins (for each subplot) will be bottom = 4, left = 4.4, top = 2, right = 2. The

plot margins will be light gray. We can specify gray gradations with the function.

• The first plot will show 𝛿14C as a function of date. The plotting area will be dark gray, i.e.,

colors()[181]. Points will be white circles with a black border.

• The second plot will be a line plot of atmospheric carbon as a function of date. It will

have a light green plotting area: colors()[363].
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• The third plot will be a scatterplot of 𝛿14C as a function of atmospheric CO2. Points will

be yellow circles with a black border. The plotting area will be light red: colors()[580].
• The fourth plot will show the sample variance for atmospheric carbon in the time series.

It will have a custom (albeit meaningless) axis, created with axis(), with the labels: a,
b, c, and d. It will also have a horizontal axis label inserted with mtext().

The result is shown in Fig 6.25.

1 library(asbio)
2 data(C.isotope)
3 dev.new(height = 8, width = 7)
4 op <- par(mfrow = c(2, 2), oma = c(0.1, 0.1, 0, 0), mar = c(4, 4.4, 2, 2),
5 bg = gray(.97))
6 #-------------------------------- plot 1 -------------------------------#
7 with(C.isotope, plot(Decimal.date, D14C, xlab = "Date", ylab =
8 expression(paste(delta^14,"C (per mille)")),
9 type = "n"))

10

11 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
12 col = colors()[181])
13

14 with(C.isotope, points(Decimal.date, D14C, pch = 21, bg = "white"))
15

16 #-------------------------------- plot 2 -------------------------------#
17 with(C.isotope, plot(Decimal.date, CO2, xlab = "Date", ylab =
18 expression(paste(CO[2]," (ppm)")),
19 type = "n"))
20

21 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
22 col = colors()[363])
23

24 with(C.isotope, points(Decimal.date, CO2, type = "l"))
25

26 #-------------------------------- plot 3 -------------------------------#
27 with(C.isotope, plot(CO2, D14C, xlab = expression(paste(CO[2], " (ppm)")),
28 ylab = expression(paste(delta^14,"C (per mille)")),
29 type = "n"))
30

31 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
32 col = colors()[580])
33

34 with(C.isotope, points(CO2, D14C, pch = 21, bg = "yellow"))
35

36 #-------------------------------- plot 4 -------------------------------#
37 plot(1:10, 1:10, xlab = "", ylab = "", xaxt = "n", yaxt = "n",
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38 type = "n")
39

40 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
41 col = "white")
42 text(5.5, 5.5, expression(paste(over(
43 sum(paste("(",italic(x[i] - bar(x)),")"^2),
44 italic(i)==1, italic(n)),(italic(n) - 1))," = 78.4")),
45 cex = 1.5)
46 axis(side = 1, at = c(2, 4, 6, 8), labels = c("a", "b", "c", "d"))
47 mtext(side = 1,
48 expression(paste("Variance of ", CO[2], " concentration")),
49 line = 3)
50 par(op)
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Figure 6.25: Figure resulting from summative example code.

�
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6.13 Histograms

Histograms are vital for considering the distributional characteristics of quantitative data.

They consist of rectangles whose height is proportional or equivalent to the frequency of

particular numeric intervals (bins) describing that variable.

Example 6.8.

The brycesite dataset from package labdsv consists of environmental variables recorded at,

or calculated for, each of 160 plots in Bryce Canyon National Park in Southern Utah.

library(labdsv)
data(brycesite)

The histogram in Fig 6.26 shows the distribution of the aspect (in degrees) of sites in the

dataset.

with(brycesite, hist(asp, xlab = "Aspect (Degrees)", main = ""))
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Figure 6.26: Histogram of raw aspect measures from the brycesite dataset.

The distribution appears remarkably uniform.

Consideration of raw aspect values in analyses is problematic because the measurements are

circular. As a result the values 1 and 360 are numerically 359 units apart, although they in fact

only differ by one degree. One solution is to use the transformation [1 − cos(aspecto − 45)]/2.
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This index will have highest values on southwest slopes (at 225 degrees), and lowest values on

northeast facing slopes (at 45 degrees). This acknowledges the fact that highest temperatures

in the Northern Hemisphere occur on Southwest facing slopes because they receive ambient

warming during the morning, coupled with late afternoon direct radiation. We have:

asp.val <- (1 - cos(((brycesite$asp - 45) * pi)/180))/2

Fig 6.27 shows the distribution of the transformed aspects which now appears bimodal.

hist(asp.val, xlab = "Aspect idex", main = "")
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Figure 6.27: Histogram of transformed aspect measures from the brycesite dataset.

�

6.14 Controlling Graphical Features using Vectors

It is often useful to add information to graphical elements using a variable.

Example 6.9.

The brycesite contains information on incident radiation received by sites, measured in

Langleys. A Langley (Ly) is a measure of energy per unit area, per unit time. To be precise,

one Ly = 1 calorie m−2 min−1. In SI units 1Ly = 41840.00 J m−2. Fig 6.28 is a scatterplot of

Langleys as a function of aspect index values. In addition, five topographic positions from
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brycesite$pos are distinguished using both point color and shape. For clarity I also insert

a legend. Note that ridge top sites have mostly northeastern aspect, and hence have lower

radiation inputs.

1 with(brycesite, plot(asp.val, annrad, xlab = "Aspect value",
2 ylab = "Annual radiation (Langleys)",
3 col = as.numeric(pos), pch = as.numeric(pos)))
4

5 legend("bottomright", legend = levels(brycesite$pos), pch = 1:5, col = 1:5)
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Figure 6.28: Scatterplot of aspect index value versus annual radiation with topographic posi-

tions indicated from the brycesite dataset.

Note that to assign colors and plotting characters appropriately, I coerce the categorical to-

pographic position vector, brycesite$pos, to be numeric with as.numeric() (Line 3). The
result is:
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as.numeric(brycesite$pos)

[1] 4 3 3 4 5 3 3 5 3 3 2 2 3 4 3 3 3 1 2 2 2 5 4 4 3 5 4 3 5 3 5 3 2 5 5
[36] 4 1 1 2 4 4 3 3 3 3 4 3 5 3 3 3 2 5 3 5 3 3 5 5 4 3 3 5 2 3 3 5 2 2 5
[71] 2 2 3 3 3 2 2 3 3 2 4 3 4 2 5 3 3 2 2 3 5 5 3 5 5 3 3 3 3 5 5 3 3 3 3
[106] 5 1 2 4 1 2 1 2 3 5 1 5 3 3 3 3 1 3 2 2 5 2 1 2 2 1 2 1 1 1 1 1 1 2 1
[141] 1 4 5 5 5 4 5 2 2 4 1 5 5 5 3 2 2 1 5 4

Ones correspond to the first alphanumeric level in pos, bottom, whereas fives correspond to

the last alphanumeric level, up_slope. The color and symbols assignments are made within

the plot on Line three. Base graphics legends can be created using the function legend()
(Line 5). The first argument(s) will be a specific x, y position in the plot for the legend, or

one of: "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright",
"right", or "center". The legend argument names the categories to be depicted. The

function levels() used in the legend argument lists the categories in a vector of class factor,

alphanumerically.

�

6.15 Secondary Axes

For many graphical summaries it may be necessary to add additional axes. For base graphics

thiswill involve laying one plot on top of another, by specifying par(new = TRUE), and defining
axes = FALSE, and depending on whether we want extra vertical or horizontal axes, xlab =
FALSE or ylab = FALSE, and ylab = "" or xlab = "" in the arguments of the second plot.

Example 6.10.

In this example I make a scatterplot that considers both brycesite annual radiation and

annual growing season radiation as a function of aspect value (Fig 6.29).

1 op <- par(mar = c(5,4.5,1,4.5), cex = 1.2)
2 with(brycesite, plot(asp.val, annrad, xlab = "Aspect value",
3 ylab = "Annual radiation (Langleys)"))
4 par(new = TRUE)
5 with(brycesite, plot(asp.val, grorad, pch = 19, axes = FALSE, xlab = "",
6 ylab = ""))
7 axis(4)
8 mtext(side = 4,"Growing season radiation (Langleys)", line = 3, cex = 1.2)
9 legend("bottomright", pch=c(1, 19), legend = c("Annual radiation",

10 "Growing season radiation"))
11 par(op)
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Figure 6.29: Scatterplot of annual radiation and growing season radiation as function of the

aspect value index for the brycesite dataset.

Note the extra roomgiven to the right handmargin (Line 1) to contain a labeling for a secondary

vertical axis. The code par(new = TRUE) (Line 4) tells R not to clean the graphical device

before drawing a new plot. The code axis(4) (Line 7) creates labeling for the right hand axis.

The argument axes = FALSE in the second plot, suppresses default plot plotting of axis units

on the left and bottom axes.

�

6.16 Barplots

Barplots are frequently used to compare single number summaries (e.g., sum, median, mean,

etc.) of categorical levels.



6.16. BARPLOTS 209

Example 6.11.

Of great concern to both citizens and scientists are rising global levels of atmospheric green-

house gasses. Atmospheric CO2 concentrations have increased more than 40% since the

start of the industrial revolution while the more potent greenhouse gasses CH4 and NO2 have

increased approximately 150% and 23%, respectively (Brinkmann, 2009). We will take a

detailed look at recent global patterns of CO2 emissions and human population numbers in this

example, while creating different sorts of barplots, and applying some of the data management

techniques introduced in Chapter 4. Tidyverse data management approaches will be used

for creating ggplot2 graphics in Chapter 4. We will use the world.emissions dataframe from

asbio as our data source.

1 library(asbio)
2 data(world.emissions)
3

4 nred <- world.emissions[world.emissions$continent != "Redundant",]
5 co2 <- with(nred, tapply(co2, country, function(x){mean(x, na.rm = T)}))
6 n <- with(nred, tapply(co2, country, function(x){length(x)}))
7

8 co2n <- data.frame(cbind(co2, n))
9 co2n.sub <- co2n[which(row.names(co2) %in% c("Canada", "China", "Finland",

10 "Japan", "Kenya", "United States")),]
11

12 labels <- paste(rownames(co2n.sub), " (", co2n.sub$n, ")", sep = "")

In the code above, CO2 annual means and sample sizes for each country are computed on Lines

4-5. A subset dataset of six countries is created on Lines 7-8. Country names for this subset

and the number of years of data collection are combined in an object called labels on Line 10.

Here is the barplot code.

1 cols <- c("#5D3003","#347C62","#A79DBE","#DFCCC2","#994E58", "#F1F1F1")
2 barplot(co2n.sub$co2, las = 2, ylab = "", yaxt = "n", names = labels,
3 log = "y", col = cols)
4 axis(2)
5 mtext(side = 2,
6 expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")")),
7 line = 2.5)

The color palette on Line 1 in the code abovewas generated using colorspace::hclwizard().
Note that rotated x-axis labels (las = 2) and log-scale y-axis are are specified on the call to

barplot() onLines 2-3. A customized y-axis is constructed on Lines 4-7. This is done largely to

force the axis tick labels to be have a default vertical format. They would be vertical otherwise

because of the use of las = 2 in barplot(). Figure 6.30 shows the shows the final result.
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Figure 6.30: Barplot of mean annual CO2 emmission levels for six countries. Number of years

used in computing means indicated in parentheses.

To depict trends since the year 2000, we can use a stacked barplot (Fig 6.31), or a side by side

barplot (Fig 6.32) by applying barplot() to a matrix with columns representing categories.

In the code below we subset the data by country (Lines 1-4) and year (Line 6), and create

a dataframe containing CO2 and country data (Line 8), which is converted to a wide format

matrix using unstack() (Line 9).

1 csub <- world.emissions[
2 which(world.emissions$country %in%
3 c("Canada", "China", "Finland",
4 "Japan", "Kenya", "United States")),]
5

6 ysub <- csub[which(csub$year >= 2000),]
7
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8 dat <- data.frame(co2 = ysub$co2, country = ysub$country)
9 dat1 <- as.matrix(unstack(dat))

In the code below, hexadecimal colors generated by colorspace::hclwizard() are brought
in (Line 1) and modified, i.e., unlisted, coerced to be a character vector and reversed (Line 2),

preceding creation of the barplot (Lines 4-8).

1 cols <- read.table("colormap_hex.txt") # file from hclwizard()
2 cols <- rev(as.character(unlist(cols)))
3

4 barplot(dat1, log = "y", col = cols, yaxt = "n", las = 2, names = labels)
5 axis(2)
6 mtext(side = 2,
7 expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")")),
8 line = 2.5, cex = 1.2)

C
an

ad
a

C
hi

na

F
in

la
nd

Ja
pa

n

K
en

ya

U
ni

te
d 

S
ta

te
s

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 6.31: Stacked barplot of mean annual CO2 emmission levels for six countries from

2000-2019.
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Side by side barplots are generated by specifying beside = TRUE in barplot() (Line 2 in

code below).

1 barplot(dat1, log = "y", beside = TRUE, col = cols, yaxt = "n", las = 2)
2

3 axis(2)
4 mtext(side = 2,
5 expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")")),
6 line = 2.5, cex = 1.2)
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Figure 6.32: Side by side barplot of mean annual CO2 emmission levels for six countries from

2000-2019.

�
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6.17 Boxplots

Boxplots or box and whisker plots and their variants are an excellent way to quickly summarize

and compare the distributions of levels in a categorical variable with respect to a quantitative

variable. The function boxplot() does this by graphically providing a five number summary

for factor levels (Fig 6.33). Specifically, the upper and lower hinges of boxes from boxplot show

the 1st and 3rd quartiles (thus the box contains the central 50% of the data). The black stripe

in the middle of each box shows the median. The whiskers extend to the most extreme data

point which is no more than coef times the length of the box away from a hinge, where coef
is defined in the arguments for boxplot() (by default coef = 1.5). Circle symbols outside

of whiskers can be considered outliers (cf., Tukey et al., 1977).

Figure 6.33: A summary of boxplot characteristics.

Example 6.12.

Here we reconsider the world.emissions data using boxplots. Recall our approach from the

previous exercise:

1 csub <- world.emissions[
2 which(world.emissions$country %in% c("Canada", "China", "Finland",
3 "Japan", "Kenya", "United States")),]
4 ysub <- csub[which(csub$year >= 2000),]
5

6 dat <- data.frame(co2 = ysub$co2, country = ysub$country)
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We can use plot(q ~ c) (Fig 6.2) or boxplot(q ~ c) to make boxplots, where q is a vector
of quantitative data and c is a corresponding vector of categorical data.

1 cols1 <- rev(c("#5D3003","#347C62","#A79DBE",
2 "#DFCCC2","#994E58", "#F1F1F1"))
3 with(dat,
4 boxplot(co2 ~ country, col = cols1, las = 2, xlab = "",
5 ylab =
6 expression(
7 paste(CO[2], " Emissions (metric tons x ", 10^6, ")"))))
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Figure 6.34: Boxplots of annual CO2 emmission levels for six countries from 2000-2019.

�
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6.17.1 Violin Plots

Another graphical tool for comparing probability distributions is a violin plot. It contains

contains similar components to a boxplots, including designation of boxes and whiskers, along

with a rotated kernel density plot on each side. Thus, it allows additional consideration of the

skew, kurtosis and potential multimodality of distributions. The function vioplot from the

package vioplot allows base graphics generation of violin plots.

Example 6.13.

As an example we will compare violin plots based on random sampling of a bimodal, uniform

and normal distribution (see ?vioplot). Note the kernel density generator fits a oblique

sphere, although the uniform PDF is a rectangle (Fig 6.35).

1 library(vioplot)
2

3 mu <- 2
4 sig <- 0.6
5 bimodal <- c(rnorm(1000,-mu, sig), rnorm(1000, mu, sig))
6 uniform <- runif(2000, -4, 4)
7 normal <- rnorm(2000, 0, 3)
8 vioplot(bimodal, uniform, normal, col = cols1[1:3],
9 names = "Bimodal", "Uniform", "Normal")
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Figure 6.35: Violin plots based on random sampling from a bimodal, uniform, and normal

distribution.
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�

6.18 Interval Plots

Interval plots display location measures (e.g. means, medians, etc.), typically as bars, along

with error bars representing measures of data dispersion (e.g., standard errors, standard

deviations, confidence intervals, interquartile ranges, etc.). Thus, barplots and boxplots can be

considered special types of interval plots.

Example 6.14.

As an example, we will create an interval plot by hand using a classic dataset from R.A.

Fisher that records the yield of different varieties of potatoes. The data are in the dataframe

asbio::potato. Here are the means and the standard errors of the mean.

data(potato)
means <- with(potato, tapply(Yield, Variety, mean))
head(means)

Ajax Arran comrade British queen Duke of York Epicure
3.3400 2.2622 3.1367 1.7778 2.1600

Great Scot
3.4033

ses <- with(potato,
tapply(Yield, Variety, function(x){sd(x)/sqrt(length(x))}))

head(ses)

Ajax Arran comrade British queen Duke of York Epicure
0.305941 0.070902 0.181184 0.148313 0.146771

Great Scot
0.140929

We will plot the means using a barplot and save the horizontal locations of bars as a object

bloc.

bloc <- barplot(means, las = 2, ylab = "Yield (lbs per plant)", col = cols)

Wewill then overlay error bars using the function segments() or arrows().

segments(x0 = bloc, y0 = means - ses, y1 = means + ses, x1 = bloc)

The result is shown in Fig 6.36.
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Figure 6.36: Interval plot of the Fisher potato dataset. Bar heights are means, error bars

represent ̄𝑥 ± 𝜎̂𝑥̄.

�

The function asbio::bplot allows straightforward creation of interval plots from specified

explanatory and response variables. A large number of location and dispersion measures can

be specified in the function arguments. To recreate Fig 6.36 one could simply type:

with(potato, bplot(y = Yield, x = Variety, bar.col = cols, border = cols))

6.18.1 Pairwise Comparisons

An important component of many biological analyses are multiple pairwise comparisons of

means (or other location measures). These tests will often require control of Family-Wise

type I Error Rate (FWER), that is, the probability of incorrectly rejecting at least one true null

hypothesis in a family of related tests. The most powerful method for controlling FWER in



218 CHAPTER 6. BASE GRAPHICS

a post hoc family of pairwise tests, following an omnibus ANalysis Of VAriance (ANOVA), is

Tukey’s honest significant difference (see Aho (2014)).

Example 6.15.

Zelazo et al. (1972) performed a series of experiments to determine whether certain exercises

could allow infants to learn to walk at a younger age. The experimental treatments were:

Active Exercise (AE), Passive Exercise (PE), Test-Only (TO), and Control (C). The data are in

the dataframe asbio::baby.walk. For more information type ?baby.walk.

Rejection of the omnibus ANOVA null hypothesis of no mean treatment differences, allowed

pairwise comparison of treatment means using Tukey’s procedure. We will use the function

asbio::pairw.anova() to run this analysis.

data(baby.walk)
tukey <- with(baby.walk, pairw.anova(y = date, x = treatment))
tukey

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
muAE-muC -2.225 -4.35648 -0.09352 Reject H0 0.038997
muAE-muPE -0.525 -2.65648 1.60648 FTR H0 0.897224
muC-muPE 1.7 -0.52625 3.92625 FTR H0 0.172932
muAE-muTO -1.58333 -3.61562 0.44895 FTR H0 0.160457
muC-muTO 0.64167 -1.48981 2.77314 FTR H0 0.829542
muPE-muTO -1.05833 -3.18981 1.07314 FTR H0 0.513366

Interval plots can be used to summarize these comparisons. The plotmethod for objects of

class pairw calls bplot() for this purpose. In particular, we have:

plot(tukey, ylab = "Months until walking", cex.lett = 1.2)

Bars are means. Errors are SEs.

The population means of factor levels with the same letter are not
significantly different at alpha = 0.05 using the Tukey HSD method.
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Figure 6.37: An interval plot summarizing the results of pairwise comparisons for the

baby.walk example.

As stated in the plot.pairw() function output (Fig 6.37), letters above bars summarize the

result of pairwise comparisons. In particular, factor levels means with the same letter are not

significantly different using the conventional FWER 𝛼 = 0.05.

�

Wewill look at more sophisticated graphical methods for pairwise comparisons in Ch 7.

6.19 matplot()

The function matplot() allows one to plot the columns of one matrix against the columns of

another. There is no clear ggplot2 (Section 7.3) alternative to matplot() because tidyverse
functions require data to be in a long table format, whereas matplot()works best with data

in a wide table format.

Example 6.16.

Todemonstratematplot()wewill use thedat1dataset, used to create Fig 6.31, which contains

annual CO2 levels from 2000-2019 for six countries.
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1 par(mar = c(3,4.5,5,2), cex = 1.1)
2 matplot(x = 2000:2019, y = dat1, col = cols1, type = "l", lwd = 1.5,
3 log = "y",
4 ylab = expression(
5 paste(CO[2], " Emissions (metric tons x ", 10^6, ")")))
6

7 legend(x = 2001, y = 80000, xpd = TRUE,
8 lty = 1:5, ncol = 2, lwd = 1.5, bty = "n",
9 col = cols, legend =

10 c("Canada", "China", "Finland",
11 "Japan", "Kenya", "United States"))

In the code above, note that I allocate additional room in the top of the graph for a legend (Line

1). Note that the response variable is a matrix of CO2 values whose columns delimit countries

(Line 2). The xpd argument in legend() allows plotting to be clipped to the device region

which will generally exceed the plot region (Line 6). The result is shown in Fig 6.38.
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Figure 6.38: A matrix line plot.

�

6.20 Interactivity

As noted earlier, R graphics are generally non-interactive. Some graphical interactivity is

allowed via the function locator(), which returns graphical coordinates where a mouse click

occurred in plot, and identify(), which can be used to add labels and symbols to mouse click

locations. For instance, try:

dev.new(RStudioGD = FALSE) # If one is using RStudio
plot(1:10)
identify(1:10, labels = 1:10)

For Windows, X Window, and Cairo graphics devices, more sophisticated methods exist for
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interactivity. In these settings, the function setGraphicsEventHandlers() can be used to

call functions when events such as mouse clicks or keystrokes occur. For instance, open an

appropriate graphics device and run the example in:

?getGraphicsEvent

Still other interactive options are possible using animations and hand rotatable graphics. These

approaches, which are often transferable to Markdown HTMLs, are considered briefly in the

next two sections of this chapter. Animations using the package ggplot2 are considered in Ch

7. GUI driven graphics interactivity is also possible, and is described in Ch 11.

6.21 Three Dimensional Graphics

It is often necessary to consider more than two variables in biological graphics. We have seen

that this can be done in a number of differentways, including the use additional colors, multiple

line or symbol types (Section 6.14, Fig 6.28), the use of additional axes in a two dimensional

context (Section 6.15, Fig 6.29)), multiple symbol sizes, or formal three-dimensional plots.

Example 6.17.

To further consider three dimensional plotting we will use two datasets from the package

veganwhich describe taiga/tundra ecosystems at particular Scandinavian sites. Plant, moss,

and lichen species abundances are given in the dataset varespec, and soil chemistry data for

the same sites are contained in the dataset varechem.

library(vegan)
data(varespec)
data(varechem)

In Fig 6.39 we examine the distribution of the heath plant Vaccinium vitis-idaea (a common

species in boreal forest understories) with respect to both pH and soil percent nitrogen. This

is done by altering symbol sizes with the abundance of V. vitis-idaea.

with(varechem, plot(N, pH, xlab = "% soil N", pch = 16,
cex = varespec$Vaccviti/100 * 15))
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Figure 6.39: Cover of Vaccinium vitis-idaea with respect to pH and % soil nitrogen. Larger

symbols indicate higher percent plant cover.

Vaccinium vitis-idaea appears to prefer intermediate to low levels of soil N, and acidic soils.

The somewhat negative association between soil N and pH is probably due to soil leaching,

because H+ (and Al3+) cations are more strongly adsorbed by soil colloids than bases in poorly

drained soils.

A 3D plot of the same associations can be created using the scatterplot3d() function from

the package scatterplot3d .

1 library(scatterplot3d)
2 Fig <- function(angle = 55){
3 s3d <- scatterplot3d(cbind(varechem$N, varechem$pH, varespec$Vaccviti),
4 type = "h", highlight.3d = TRUE, angle = angle, scale = .7, pch = 16,
5 xlab = "N", ylab = "pH", zlab =
6 expression(paste(italic(Vaccinium), " ", italic(vitis-idaea),
7 " % cover")))
8

9 lm1 <-lm(varespec$Vaccviti ~ varechem$N + varechem$pH)
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10 s3d$plane3d(lm1)
11 }
12 Fig()

In the code above, I define the figure to be a function (named Fig) to allow the angle of rotation

in the 3D scatterplot to be easily changed using the angle argument in Fig (Line 2). Functions
will be addressed in detail in Ch 8. By stipulating highlight.3d = TRUE (Line 4), objects that
are closer to the viewer with respect to the x plane are given warmer colors. A regression

“plane” is also overlaid on the graph (Lines 9-10). The fitted plane is produced from a multiple

regression model created by the function lm().

The result is shown in Fig 6.40.
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Figure 6.40: Cover of Vaccinium vitis-idaeawith respect to pH and % soil nitrogen, depicted in

a 3D scatterplot.
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6.22 Animation

Animations can be created in R to illustrate a wide range of processes (Xie, 2013; Xie et al.,

2018b). Functions with animation are generally based on loops (Section 8.5) with some

method of slowing the loop; usually the function Sys.sleep().

Example 6.18.

Here we add animation to the 3D scatterplot shown in Fig 6.40. This will be facilitated by the

fact that the plot is a function with an argument whose alteration results in modification of the

graph.

1 fig.rot <- function(){
2 lapply(seq(1, 360), function(i){
3 Fig(i)
4 Sys.sleep(.1)
5 })
6 }
7

8 fig.rot()
9 # save frames into one GIF:

10 library(animation)
11 saveGIF(fig.rot(), interval = 1, movie.name = "vaccinium.gif")

Recall that lapply() returns a list of the same length as its first argument X, whose elements

result from applying a function, given in the second argument, to corresponding elements of X.
In the code above, an argument-less function is created containing a loop run by lapply()
(Lines 2 - 5). As the loop index i changes from i = 1 to i = 360 (Line 2) this changes the
angle argument in the function fig(), used in creating Fig 6.40. At the end of each step in the

loop, the system is paused for a tenth of second (Line 4) with the function Sys.sleep() to
allow each “frame” of the animation to be viewed separately. In the (optional) last two lines of

code, the R package animation is loaded, and the function animation::saveGIF() is used to

save the animation in a GIF file format7.

The animation result is shown in 6.41.

7Use of saveGIF requires installation of open source software ImageMagick or GraphicsMagick (see

?saveGIF).

http://www.imagemagick.org/script/convert.php
http://www.graphicsmagick.org
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Figure 6.41: Animated version of the 3D scatterplot from Fig 6.40. Animation controls are

provided by the LaTeX package animation.

�

Working animations generated inR can be placed into HTML documents created underRMark-

down, or PDF documents under Sweave-alike approaches (Section 2.10.2). The formermethod

currently requires installation of the gifski R package and the specification: animation.hook
= "gifski" among the chunk options for the animation. The latter approach requires loading

of the animate LaTeX package and using the chunk option fig.show = "animate". PDF ani-
mations can viewed using a number of PDF viewers including the Foxitr and Adober Acrobat

Readers.

Example 6.19.

We can also create hand-rotatable 3D figures under the rgl real-time rendering system.

Attaching package: 'rgl'

The following object is masked from 'package:plotrix':

mtext3d
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1 expg <- expand.grid(varechem$pH, varechem$N)
2 subs <- cbind(varechem$pH, varechem$N)
3 tf <- (expg[,1] == subs[,1]) & (expg[,2] == subs[,2])
4 y <- ifelse(tf == TRUE, varespec$Vaccviti, NA)
5 surface <- data.frame(N = expg[,1], pH = expg[,2], vac.vit = y)
6

7 library(car)
8 scatter3d(vac.vit ~ N + pH, data = surface, surface = TRUE, fit = "linear",
9 zlab = "N", xlab = "pH", ylab = "Vaccinium vitilus (% cover)")

In the code above, a initial surface is created that considers all possible combinations of pH and

N outcomes (Line 1) and actual occurrences of varespec$Vaccviti at observed combinations

(Lines 3 and 4). The function scatter3d() in the package car (Fox and Weisberg, 2019)

uses tools from the rgl package (Murdoch and Adler, 2025) to render a three dimensional

scatterplot. The scatterplot will be rotatable within an R session, and can be rendered as a

rotatable graphic in an RMarkdown HTML8 and in some PDF frameworks. Plots from rgl can

also be rendered and manipulated in Shiny apps (see Ch 11).

Figure 6.42: A hand rotatable graphics object (within an R interactive or suitable PDF/HTML

environment).

�

8See rgl::playwidget() if you you are reading this document as a pdf.
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Exercises

1. Consider the variables: x <- c(1,2,2.5,3,4,3,5) andy <- c(6,4.3,3,3.1,2,1.7,1).
(a) Make a plot with x defining the x-axis and y on the y-axis.

(b) Make every point in the scatterplot a different color.

(c) Make every point a different shape.

(d) Create a legend describing all the shape and color combinations of all points one

through seven (call them Point 1, Point 2, etc.).

(e) Convert from a point to an overplotted line and point plot.

(f) Change the label of the x-axis to “Abscissa axis” and the label of the y-axis to be

“Ordinate axis” using a plotmath approach. This will require use of the functions

expression(), paste() and italic().
(g) Place the text “y = -1.203x +6.539” at coordinatesx = 2, y = 2.5using the function

text(). Italicize as indicated.
(h) Place a line with a slope of -1.203 and an y-intercept of 6.539 on the plot using the

function abline().

2. The Indometh dataframe from the package datasets describes pharmacokinetics of the

drug indomethacin following intravenous injections for six human subjects.

(a) Create a histogram for the variable conc, which gives plasma concentrations of

indomethacin in (mcg/ml) in subjects over time. Use an appropriate x-axis label.

(b) Create a scatterplot of conc as a function of time (in hours). Create appropriate

axis labels.

(c) Change symbols and colors of points in (b) based on levels in Subject.
(d) Create a wide table format for Indometh using: wide <- unstack(Indometh,

conc ~ Subject) andnames(wide) <- paste("Subject", c(1,4,2,5,6,3)).
(e) Create a stackedbarplot anda sideby sidebarplot basedon: barplot(as.matrix(wide)).
(f) Use appropriate y-axis labels.

(g) Create a multiple line plot (with a line for each subject) using: time <- c(0.25,
0.50, 0.75, 1.00, 1.25, 2.00, 3.00, 4.00, 5.00, 6.00, 8.00) and

matplot(x = time, y = wide, type = "l")
(h) Generate appropriate axis labels for the plot.

(i) Create an appropriate legend for the plot created in (h). The colors and line types

used by matplot()will be 1:6. The order of subjects is 1, 4, 2, 5, 6, 3.

3. The dataframe life.exp from asbio compares life expectancy of field mice given five

different diets.

(a) Make and interpret a boxplot showing lifespan as a function of treatment.
(b) Make an interval plot by hand showing lifespan as a function of treatment using

means as measures of location, and standard deviations to generate error bars.

4. (Advanced) Conduct an ANOVA and a post hoc pairwise comparison of means with

Tukey’s HSD using: anova(lm(lifespan ~ treatment, data = life.exp)), tukey
<- with(life.exp, pairw.anova(lifespan, treatment)).
(a) Create an interval plot summarizing these results using: plot(tukey).
(b) Interpret (a).
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5. Load the C.isotope dataframe from the package asbio. Using par(mfrow()), create a
graphical device holding three plots in a single row, i.e., the three plots will be side by

side.

(a) In the first plot, show 𝛿14C as a function of time (decimal.date) using a line plot.
Use appropriate axis labels.

(b) In the second plot, show CO2 concentration as a function of time in a scatterplot.

(c) In the third plot, showmeasurement precision (column four in the dataset) as a

function of 𝛿14C.

6. Load the goats dataframe from package asbio.

(a) Create a scatterplot of NO3 as a function of feces.
(b) Make a plot showing NO3 and organic.matter as a simultaneous function of feces

by adding a second y-axis.

(c) Change symbol sizes in (a) to reflect the values in organic.matter.

(d) Create a 3D scatterplot with scatterplot3d::scatterplot3d, depicting NO3 as a
function of organic.matter and feces.



230 CHAPTER 6. BASE GRAPHICS



Chapter 7

Grid Graphics, Including ggplot2

“If you think you can learn all of R, you are wrong. For the foreseeable future you

will not even be able to keep up with the new additions.”

- Patrick Burns, CambR User Group Meeting, Cambridge (May 2012)

7.1 Grid Graphics

There are a large number of auxiliary R packages specifically for graphics. Many of these

utilize or extend the base R graphics approaches described in Chapter 6. Several successful

newer packages, however, rely on the R grid graphics system (see Murrell (2019)), codified

in the package grid (R Core Team, 2023). The grid graphics system itself provides only low-

level facilities with no high-level functions to generate complete plots. Nonetheless, several

successful packages have built high-level functions on grid foundations including:

• lattice: one of the first serious attempts to build high-level functions for grid graphs

(Section 7.2).

• gridGraphics: converts plots drawn with the base R graphics, e.g., plot(), to identical
grid output.

• ggplot2: a deservedly popular grid package that “… tries to take the good parts of base

and lattice graphics and none of the bad” (Wickham, 2016).

Functions from ggplot2 are the major focus of this chapter.

7.2 lattice

Among other applications, the lattice package (Sarkar, 2008) contains functions for imple-

menting the trellis graphical system (Cleveland, 1993)1, so-called because it often utilizes a

rectangular array of plots resembling a garden trellis (Ryan and Nudd, 1993). Trellis plots,

1The R trellis graphics system was originally developed for S and S-Plus at Bell Labs (see Becker et al. (1996)).

The lattice package can be considered a re-implementation of this original system.

231
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generated from lattice, are an important component of several important R packages, includ-

ing nlme, which allows the generation of linear and nonlinear mixed effects models (see Aho

(2014), Ch 10).

Example 7.1.

A simple example of a call to trellis plotting is shown in Fig 7.1. The datasets::Indometh
dataframe, previously used in Examples in Ch 6, records pharmacokinetics of the drug in-

domethacin, following intravenous injections given to human subjects. The dataframe belongs

to several grouped object classes, defined in nlme, which have their own plotting methods (Ch

8), and are implemented through a generic call to plot(). We are, of course, more familiar

with the use of plot() in base R graphics approaches, implemented via the graphics package.

library(nlme)
plot(Indometh)
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Figure 7.1: Example of a trellis plot. Indomethacin levels are tracked in six human subjects

over eight hours following intravenous injections.

�

The lattice package contains several high level plotting functions that can be considered

analogues of base R graphics functions. These include:

• lattice::xyplot(), which is similar to graphics::plot() in its default type = "p"
mode,

• lattice::histogram(), which is analogous to graphics::hist(),
• lattice::barchart(), which is similar to graphics::barplot(),
• lattice::levelplot(), which is analogous to graphics::image(), and
• lattice::wireframe(), which is similar to graphics::persp().
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In general, trellis plots in lattice can be created using a conditional formula as the first argument

of its functions. This will have the form y ~ x|z, which signifies y is a function of x, given
levels in z.

Example 7.2.

Consider a summarization of the association of age and tobacco use (LOW and HIGH) and
esophageal cancer cases using the e.cancer dataset (Breslow and Day, 1980) from asbio (Fig

7.2).

1 data(e.cancer)
2

3 library(tidyverse)
4 means <- e.cancer |> # obtain means
5 group_by(age.grp, tobacco) |>
6 summarize(cases = mean(cases))
7

8 library(lattice)
9 barchart(cases ~ age.grp|tobacco, data = means, xlab = "Age",

10 ylab = "No. of cases")
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Figure 7.2: Use of lattice::barchart() to illustrate changes in esophogeal cancer cases

with subject tobacco use and age. Bar heights are means.

Note the use of pipes and tidyverse functions (Ch 5) to obtain mean numbers of cases
for combinations of levels in age.grp and tobacco (Lines 3-6). The formulacases ~
age.grp|tobacco (Line 8) indicates that the mean cases should considered as a function of

levels in age.grp, given levels in tobacco.
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�

Approaches in lattice can be used in many non-trellis applications.

Example 7.3.

Figure 7.3 provides examples of three dimensional graphics generation using the lattice func-

tions levelplot(), contourplot(), and wireframe(). The functions are easiest to use when

data are in a spatial grid format with row and column numbers defining evenly spaced inter-

vals from some reference point, and cell responses themselves constitute “heights” for the

z (vertical) axis. The popular volcano dataset, used in the figure, describes the topography

of Maungawhau / Mount Eden, a scoria cone in the Mount Eden suburb of Auckland, New

Zealand. In this case, rows and columns represent 10m Cartesian intervals. The first row

contains elevations (in meters above sea level) for northernmost points, whereas the first

column contains elevations of westernmost points. The argument split in plot.trellis()
is used with both graphs in Fig 7.3 (Lines 5 and 7). It is a vector of 4 integers c(x, y, nx,
ny) that indicate where to position the current plot at the x, y position in a regular array of nx
by ny plots.

library(lattice)
plot(levelplot(volcano, col.regions = heat.colors, xlab = "x", ylab = "y"),

split = c(1, 1, 1, 2), more = TRUE,
panel.width = list(x = 5.4, units = "inches"))

plot(wireframe(volcano, panel.aspect = 0.7, zoom = 1, lwd = 0.01,
xlab = "x", ylab = "y", zlab = "z"),

split = c(1, 2, 1, 2), more = FALSE,
panel.width = list(x = 5.4, units = "inches"))
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Figure 7.3: Representations of Maungawhau (Mt Eden) using lattice functions.

�

While lattice can be used to generate nice graphs, many users have found its coding require-

ments to be burdensome and non-intuitive. This issue, coupled with the desirable characteris-

tics of the grid graphics system, prompted the development of the package ggplot2, one of the

tidyverse collection of packages (Ch 5).

7.3 ggplot2

The ggplot2 package (formerly gglot) emulates the “grammar of graphics”, that underlies all

statistical graphics (Wilkinson, 2012). The success of the ggplot2 package is evident in its rich

ecosystem of contributed extension packages. Detailed descriptions of the ggplot2 package

https://exts.ggplot2.tidyverse.org/gallery/
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can be found in Wickham (2010), and Wickham (2016)2. Helpful ggplot2 “cheatsheets” can be

found here. Like most grid implementations, ggplot2 does not play well with base R graphics.

In fact, ggplot2 is based on its own unique object oriented system, the ggproto system 3.

7.3.1 ggplot()

The function ggplot() is used to initialize essentially all plotting procedures in ggplot2. There

are three common approaches:

1. ggplot(df, aes(x, y, other aesthetics))
• Here df is a tibble or dataframe. and aes() represents aesthetic mappings. This

approach is recommended if all layers use the same data and aesthetics.

2. ggplot(df)
• Here only the dataframe or tibble to be used is identified up-front. This approach

is useful if graphical layers use different 𝑥 and 𝑦 coordinates, drawn from the same

dataset, df.
3. ggplot()

• Here a ggplot skeleton is initialized that is fleshed out as layers are added. This

approach is recommended ifmore thanmore thanonedataset is used in the creation

of graphical layers.

One of these formats will be used as the first line of code when creating a ggplot2 graphic.

Layers will then be added representing geoms, themes, and aesthetics (see Section 7.3.2

immediately below). To clarify coding steps, this is typically done by separating layers into

lines, connected with the 𝑔𝑔𝑝𝑙𝑜𝑡2 operator, %+%, which can be written as + in the context of a

ggplot.

Example 7.4.

In the code below I have initiated a ggplot, under Approach 1 discussed above, using data

from a dataframe called df that contains variables named x and y, that will define the 𝑥 and 𝑦
coordinates for the items in the plot. I have also added two geom layers and a theme, via the

imaginary functions geom1(), geom2() and theme1().

ggplot(df, aes(x = x, y = y)) +
geom1() +
geom2() +
theme1()

�

2Although ggplot2 is a tidyverse package, its release in 2005, greatly preceded the formal establishment of the

tidyverse in 2016.
3For more information type: ?ggplot2::ggproto.

https://rstudio.github.io/cheatsheets/html/data-visualization.html
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7.3.2 Geoms, Aesthetics, and Themes

The ggplot2 package facilitates the generation of overlays with geoms, short for “geometric

objects”, aesthetics, and themes. A number of ggplot2 geom functions are shown in Table

7.1. Note that arguments in geom functions are fairly consistent. The argument mapping
refers to aesthetic mappings, often specified with the ggplot2 function aes(). A few aesthetic

mapping functions are shown in Table 7.2. An explicit definition for the stat argument is

required by several geoms, e.g., geom_col() and geom_bar(), and can take the form stat =
"identity", indicating that raw unsummarized data are to be plotted. The ggplot2 package

also allows specification of general graphical themes including user-defined themes, via the

function theme(). An exhaustive list of> 90 potential theme() arguments can be found by

typing ?theme. Pre-defined ggplot2 theme frameworks include theme_gray(), the signature
ggplot2 theme (with a grey background and white gridlines), theme_bw(), theme_classic(),
theme_dark(), theme_minimal(), and many others.

Table 7.1: A few geom alternatives.

Geom function Usage Impt. arguments

geom_abline() Add reference lines mapping
geom_hline() data
geom_vline() slope

intercept

geom_segment() Add lines and curves mapping
geom_curve() data

position

geom_area() Area and ribbon charts mapping
geom_ribbon() data

stat

geom_bar() Bar charts mapping
geom_col() data

stat

geom_bin2d() Heatmap of bin counts mapping
data
stat

geom_boxplot() Boxplots mapping
data
stat

geom_contour_filled() Generate 2D contours of 3D surface mapping
data
stat

geom_count() Count overlapping points mapping
geom_sum() data
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stat

geom_crossbar() Add lines, crossbars, error bars mapping
geom_errorbar() data
geom_linerange() stat
geom_pointsrange()

geom_density() Smoothed densities mapping
data
stat

geom_density_2d() Contours of 2D densities mapping
geom_density_2d_filled() data

stat

geom_dotplot() Dot plots mapping
data
position

geom_errorbarh() Horizontal error bars mapping
data
stat

geom_freqpoly() Histograms mapping
geom_histogram() data

stat

geom_function() Draw curve from function mapping
data
stat

geom_hex() Hexagonal heat map mapping
data
stat

geom_jitter() Jittered points mapping
data
stat

geom_text() Add text mapping
data
stat

geom_point() Add points mapping
data
stat



7.3. GGPLOT2 239

Table 7.2: A few example of ggplot2 aesthetic functions.

Function Usage Arguments

aes() Aesthetics of geoms x, y

colour() Color related aesthetics See ?aes_colour_fill_alpha
fill()
alpha()

linetype() Line type, size, shape See ?aes_linetype_size_shape
size()
shape()

group() Grouping See ?aes_group_order

7.3.3 Boxplots

Figure 7.4 shows a boxplot of R.A. Fisher’s classic potato dataset from the Rothamsted Ex-

perimental Station (Fisher and Mackenzie, 1923). There are three important coding features

that should be recognized in the chunk below. First, the plot was initialized using the first

approach described in the previous section: ggplot(df, aes(x, y, other aesthetics))
(Line 2). Specifically, the dataframe to be used, potato, was identified, and the coordinates for

the plot were defined inside aes(). Second, plot modifications are added with the functions

theme() (which includes a call to the function element_text() to change the angle of text on
the x-axis), xlab(), and finally, geom_boxplot() (Lines 3-5). Third, the continuation prompt,

+, is placed at the end of lines of code to indicate that another graphical layer is being added to

the plot. In ggplot2, +, is somewhat analogous to the forward pipe operator, |>, used in the

tiddyverse (Ch 5). Specifically, it denotes the continuation of ggplot2 plotting commands for a

particular graphic. This continuation is broken with a line break (Line 6).

1 data(potato) # in asbio
2 ggplot(potato, aes(x = factor(Variety), y = Yield)) +
3 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
4 xlab("Variety") +
5 geom_boxplot()
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Figure 7.4: An example of a ggplot2 boxplot. This is the signature appearance of ggplot2

graphs: a grey background and white grid lines.

7.3.4 Saving Plots

Plots can be saved using the function ggsave() or with a graphical device function, e.g., pdf(),
png(), as described in Ch 6.

1 g <- ggplot(potato, aes(x = factor(Variety), y = Yield)) +
2 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
3 xlab("Variety") +
4 geom_boxplot()
5

6 pdf("potato.pdf")
7 print(g)
8 dev.off()

pdf
2
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Importantly, unlike graphics::plot(), a graphics object can be created under grid ap-

proaches. This is demonstrated on Line 1, where the ggplot is assigned to the object name g. In
Lines 5-7, the graph is rendered, using print.ggplot(g) or plot.ggplot(g), and compiled.

The object g has ggplot2-specific classes "gg" and "ggplot",

class(g)

[1] "gg" "ggplot"

and base type list:

typeof(g)

[1] "list"

7.3.5 Line Plots

Line plots are generally rendered using the function geom_line().

In Fig 7.5 we consider the Fisher’s potato data under a line plot approach. This presentation

allows us to consider both potato variety and fertilizer levels. Note that I distinguish categories

in the variable Fert using colour and lty arguments in aes() function calls (Line 1).

1 ggplot(potato, aes(x = Variety, y = Yield, colour = Fert)) +
2 geom_line(aes(group = Fert, lty = Fert),
3 alpha = .7, linewidth = 1.1) +
4 theme_classic() +
5 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9))
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Figure 7.5: Line plot representation of the potato dataset.

7.3.6 Scatterplots

Here we summarize the asbio::world.emissions CO2 and gross domestic product data,

using a tidyverse approach.

1 library(asbio)
2 data(world.emissions)
3 library(dplyr)
4 country.data <- world.emissions |>
5 filter(continent != "Redundant") |>
6 group_by(country) |>
7 summarize(co2 = mean(co2, na.rm = TRUE),
8 gdp = mean(gdp, na.rm = TRUE))

I don’t like the default ggplot2margins. Specifically, I feel that the axis label font size is too

small and placed too close to the axes. Thus, prior to making a scatterplot of these variables, I

make my own margin theme, as a function, that calls theme().
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1 margin_theme <- function(){
2 theme(axis.title.x = element_text(vjust=-6, size = 12),
3 axis.title.y = element_text(vjust=6, size = 12),
4 axis.text = element_text(size = 10),
5 plot.margin = margin(t = 7.5, r = 7.5, b = 22, l = 22))
6 }

We can call this custom theme within ggplot code (Fig 7.6).

1 g <- ggplot(country.data, aes(x = gdp, y = co2)) +
2 ylab(expression
3 (paste(CO[2], " Emissions (metric tons x ", 10^6, ")"))) +
4 xlab("GDP (international dollars)") +
5 geom_point(size = 2) +
6 scale_y_continuous(trans= "log10") +
7 scale_x_continuous(trans= "log10") +
8 theme_classic() +
9 margin_theme()

10 g



244 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1e−01

1e+01

1e+03

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.6: An example of a ggplot2 scatterplot using the world.emissions dataset.

I also called the built-in ggplot2 theme theme_classic() to generate an uncluttered graph

with no grid lines.

Several other code steps are worth mentioning in Fig 7.6. First, note the use of plotmath

code using calls to expression() in xlab() and ylab(). As an alternative, I could have

used labs(x,y) where the arguments x and y would contain code for xlab() and ylab().
Second, log10 transformations were applied to both axes using the ggplot2 functions

scale_x_continuous() and scale_y_continuous(). As an alternative, I could have used

the functions scale_x_log10() and scale_y_log10().

We can also require specific tick locations using scale_y_continuous (Fig 7.7).

g + scale_y_continuous(breaks = c(1, 50, 150, 500, 750, 1600),
trans= "log10")
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Figure 7.7: Custom tick mark locations overlaid on he 𝑦-axis of Fig 7.6.

7.3.7 Transformations

Other than log10 transformations (Fig 7.6), several other graphical transformation

can be readily applied in the transform function of scale_x_continuous() and

scale_y_continuous(), including "asn" (arcsine), "atanh" (the inverse hyperbolic

tangent), "boxcox" ( i.e., the optimal power transform for the response variable in a linear

model (see Aho (2014))), "log" (log𝑒 transform), "log1p" (log𝑒 transform, following the

addition of 1 to prevent undefined logarithms of zeroes), "log2" (log2 transform), "logit"
(i.e., the log odds for a probability), "pseudo_log" (log𝑒 transform, NAs resulting from

undefined logarithms of zeroes, are given the value zero), "probit" (i.e. the inverse CDF

for a standard normal distribution), "exp", "modulus", "reciprocal", "reverse", "sqrt",
"date", "hms", and "time".

7.3.8 Adding Model Fits

It is straightforward to add fits from statistical models to a ggplot object, for instance the object

g created in Fig 7.6. Easily accessed modeling approaches include conventional general linear
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models and locally fittedmodels, like Generalized AdditiveModels (GAMs) and locallyweighted

scatterplot smoothers (LOWESS), that allow the association between x and y to “speak for

itself” without the assumption of underlying global linear association (Aho, 2014). By default,

geom_smooth() provides a LOWESS fit using the function loess() from the R distribution

stats package. The code geom_smooth(method = "lm") fits a general linear model, in this

case, a simple linear regression (Fig 7.8). By default, error polygons are included with fits

that represent 95% confidence intervals for the true fitted value. These can be turned off by

specifying geom_smooth(se = FALSE).

g + geom_smooth(method = "lm") # call to lm fit
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Figure 7.8: A regression model overlaid on Fig reffig:gscat1.

7.3.9 Annotations in Graphs

The ggplot2 package has nice functions for graph annotation. In Fig 7.9 we use the function

geom_label() to label countries. The arguments nudge_y and nudge_x allow adjustments to

label locations.
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1 sub <- country.data |>
2 filter(country %in% c("Canada", "Finland",
3 "Japan", "Kenya", "United States"))
4

5 g + geom_point(size = 3, shape = 1, data = sub, col = "orange") +
6 geom_label(aes(label = country), data = sub, nudge_y = .25,
7 nudge_x = -.25, alpha = .9, colour = "orange")

Canada

Finland

Japan

Kenya

United States

1e−01

1e+01

1e+03

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.9: Country annotations added to Fig 7.6.

The ggpmisc package allows annotation of statistical models in a ggplot. This is accomplished

using the function ggpmisc::stat_poly_eq()which fits a model usingstats::lm(), com-

putes model quantities and prepares tidy text summaries of the model including the model

equation, test statistic values and 𝑝-values. Computed terms are called using the ggplot2 func-

tion after_stat(), which delays aesthetic mapping in aes() until after statistic calculation.

In Fig 7.10, the equation for the world.emissions regression model is placed in the

figure with after_stat(eq.label), and the adjusted 𝑅2 (Aho, 2014) is placed using
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after_stat(adj.rr.label). A complete list of available computed terms, including

eq.label and adj.rr.label, is given in the documentation for stat_poly_eq().

1 library(ggpmisc)
2

3 g + geom_smooth(method = "lm") +
4 stat_poly_eq(aes(label = paste(after_stat(eq.label),
5 after_stat(adj.rr.label),
6 sep = "*\", \"*")))

y = − 10.8 + 1.11 x, Radj
2  = 0.91
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Figure 7.10: Regression model summaries overlaid on Fig 7.6.

A potential criticism of ggplot2 is that its graphical rendering approaches are not readily

accessible (as code or output), and statistical summaries are often not adequately or clearly

described (in documentation or output). For instance, when using geom_smooth() it is un-
clear which default smoothing parameters are actually being used, although these can be

set within geom_smooth(). The function ggplot2::ggplot_build() provides underlying

plotting details. For example
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head(ggplot_build(g)$data[[1]])

y x PANEL group shape colour size fill alpha stroke
1 0.40732 10.494 1 -1 19 black 2 NA NA 0.5
2 0.51149 10.085 1 -1 19 black 2 NA NA 0.5
3 1.63089 11.428 1 -1 19 black 2 NA NA 0.5
4 -0.31447 NA 1 -1 19 black 2 NA NA 0.5
5 1.00675 10.642 1 -1 19 black 2 NA NA 0.5
6 -0.95782 NA 1 -1 19 black 2 NA NA 0.5

The gginnards package can be used to generate accessible ggplot analytical information. This

can be done by calling gginnards::geom_debug()within ggpmisc::stat_poly_eq().

As an example, recall that a log10 − log10 transformation was used to generate the scatterplot

object, g, used to project Fig 7.6. I can summarize the linear model, overlaid in Fig 7.8, with

the code:

1 library(gginnards)
2 g + stat_poly_eq(formula = y ~ x, geom = "debug",
3 output.type = "numeric",
4 summary.fun = function(x) x[["coef.ls"]])

[1] "PANEL 1; group(s) -1; 'draw_function()' input 'data' (head):"
npcx npcy label

1 NA NA
coef.ls

1 -1.0801e+01, 1.1109e+00, 2.8430e-01, 2.6794e-02, -3.7990e+01, 4.1462e+01, 1.3821e-82, 3.6215e-88
coefs r.squared rr.confint.level rr.confint.low

1 -10.8005, 1.1109 0.91388 0.95 0.89056
rr.confint.high adj.r.squared f.value f.df1 f.df2 p.value AIC

1 0.92912 0.91335 1719.1 1 162 3.6215e-88 30.353
BIC n rr.label b_0.constant b_0 b_1 fm.method fm.class

1 39.652 164 FALSE -10.801 1.1109 lm:qr lm
fm.formula fm.formula.chr x y PANEL group orientation

1 y ~ x y ~ x 8.3836 3.2706 1 -1 x

This is in accordance with the linear model log10(CO2) = −10.800518 + 1.110939 log10(GDP)
obtained using the base function lm().

model <- lm(log(co2, base = 10) ~ log(gdp, base = 10), data = country.data)
coef(model)

(Intercept) log(gdp, base = 10)
-10.8005 1.1109

7.3.10 Secondary Axes

Secondary axes can be difficult to implement in ggplot2 because they require user specification

of a one-to-one transformation, and the correct back-transformation. A simple possibility is a
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linear transformation4. Let 𝑦 represent raw, untransformed data to be plotted on a primary

axis. A linear transform of 𝑦, to be plotted on the corresponding secondary axis, will have the

form:

𝑦′ = 𝑎 + 𝑏 ⋅ 𝑦 (7.1)

with back-transformation:

𝑦′ − 𝑎
𝑏

= 𝑦. (7.2)

where 𝑦′ denotes the transformed data, and 𝑎 and 𝑏 are user-defined constants.

When choosing a linear transform, it is helpful to remember that including a multiplier (allow-

ing 𝑏 to equal a number other than 1), will increase the data variance (spread) by a factor of 𝑏2,
and that adding a constant (letting 𝑎 be a number other than 0), will cause the data mean to

shift by 𝑎 units, but will not affect the data variance (see Aho (2014)).

Example 7.5.

To demonstrate secondary axes, we will examine two datasets published by Rubino et al.

(2013) concerning CO2 and 𝛿13C trapped in Antarctic ice layers. We wish to simultaneously

plot CO2 and 𝛿13C of as a function of the age of the depositional layer. We will use the primary

(left-hand) vertical axis to plot CO2 and the use the right hand axis for 𝛿13C. We first create a

composite dataset for years in which both CO2 and 𝛿13C were measured.

1 data(Rabino_CO2); data(Rabino_del13C)
2 # Match 1st dataset with 2nd
3 w <- which(Rabino_CO2$effective.age %in% Rabino_del13C$effective.age)
4 R.C <- Rabino_CO2[w,]
5 # match 2nd dataset with 1st
6 w <- which(Rabino_del13C$effective.age %in% R.C$effective.age)
7 R.d <- Rabino_del13C[w,]
8 data.C <- data.frame(CO2 = tapply(R.C$CO2, R.C$effective.age, mean),
9 d13C = tapply(R.d$d13C.CO2, R.d$effective.age, mean),

10 year = as.numeric(levels(factor(R.d$effective.age))))

For the years (ice depths) under consideration, CO2 levels vary between approximately 271

and 368 ppm. A range of around 100 ppm.

data.C |>
reframe(range_ppm = range(CO2, na.rm = T))

range_ppm
1 277.16

4non-linear transformations include log, trigonometric, and exponential transformations.
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2 368.02

Experimentation with linear transformations, Eq (7.1), reveals that a similar numeric range

can be generated for 𝛿13C with the transformation: 𝑦′ = 56 ⋅ 𝑦 + 729.

data.C |>
reframe(range_ppm = range((d13C * 56) + 729, na.rm = T))

range_ppm
1 277.11
2 373.34

Thus, we create:

1 data.C$td13C <- data.C$d13C * 56 + 730

and use it in the ggplot code below. A scatterplot of the data is shown in Fig 7.11.

2 ggplot(data.C, aes(x = year, y = CO2)) +
3 geom_point(colour = "blue", size = 2.7, alpha = 0.2) +
4 theme_classic() +
5 margin_theme() +
6 ylab(expression(paste("C",O[2], " (ppm)"))) +
7 geom_point(data = data.C, aes(x = year, y = td13C), colour = "red",
8 size = 2.7, alpha = 0.2) +
9 scale_y_continuous(sec.axis =

10 sec_axis(~ (. - 730)/56,
11 name = expression(paste(delta^13,
12 "C (\u2030)")))) +
13 theme(axis.text.y.right = element_text(colour = "red")) +
14 theme(axis.text.y.left = element_text(colour = "blue")) +
15 theme(axis.title.y.right = element_text(colour = "red")) +
16 theme(axis.title.y.left = element_text(colour = "blue")) +
17 theme(axis.line.y.right = element_line(colour = "red")) +
18 theme(axis.line.y.left = element_line(colour = "blue")) +
19 theme(axis.ticks.y.right = element_line(colour = "red")) +
20 xlab("Year")
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Figure 7.11: A graphical representation of data published by Rubino et al. (2013), using two

vertical axes.

There were two vital steps for creating the secondary axis.

• First, as a preliminary step, we transformed the raw 𝛿13C data to allow plotting 𝛿13C
points in the range of CO2 observations (Line 1). The result is the object data.C$td13C.

• Second, in Lines 8-11 we scale the secondary axis based on a back-transformation

of the transformed data (Eq (7.2)). That is, we solve for 𝑦 in 𝑦′ = 56 ⋅ 𝑦 + 730 and

find 𝑦 = (𝑦′ − 730)/56. This is what underlies the code on Line 9: sec.axis =
sec_axis(~ (. - 730)/56,. Note that axis components were painstakingly colored

using ggplot2::theme() (Lines 12-19).

�

7.3.11 Defining Graphical Features using Vectors

As we have already seen, it is straightforward to define figure plotting characteristics (symbols,

symbol sizes, colors, line types, etc.) using relevant data.
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Example 7.6.

In Fig 7.12 we change symbols and colors for a representation of the asbio::fly.sex dataset
based on experimental treatments:
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Figure 7.12: A representation of the fly.sex dataset.

Note that the linear fits in Fig 7.12 are actually for separate regression models, longevity ~
thorax, for each level in fly.sex$Treatment. They are not from the single ANCOVAmodel:

lm(longevity ~ thorax * Treatment), although this is not clear at all from the ggplot
graph. It is, however, revealed from:

g1 + stat_poly_eq(formula = y ~ x, geom = "debug",
output.type = "numeric",
summary.fun = function(x) x[["coef.ls"]])

`geom_smooth()` using formula = 'y ~ x'

[1] "PANEL 1; group(s) 1, 2, 3, 4, 5; 'draw_function()' input 'data' (head):"
npcx npcy label

1 NA NA
2 NA NA
3 NA NA
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4 NA NA
5 NA NA

coef.ls
1 -5.5699e+01, 1.4779e+02, 1.6834e+01, 2.0795e+01, -3.3087e+00, 7.1071e+00, 3.0654e-03, 3.0692e-07
2 -5.0242e+01, 1.3613e+02, 2.4519e+01, 2.9186e+01, -2.0491e+00, 4.6640e+00, 5.2023e-02, 1.0753e-04
3 -43.7248157, 131.4496314, 31.3250601, 37.8123482, -1.3958414, 3.4763678, 0.1760921, 0.0020423
4 -5.7992e+01, 1.3700e+02, 2.8260e+01, 3.3625e+01, -2.0521e+00, 4.0744e+00, 5.1714e-02, 4.6763e-04
5 -6.1280e+01, 1.2500e+02, 1.5225e+01, 1.8944e+01, -4.0250e+00, 6.5983e+00, 5.2871e-04, 9.8692e-07

coefs r.squared rr.confint.level rr.confint.low
1 -55.699, 147.790 0.68712 0.95 0.418224
2 -50.242, 136.127 0.48607 0.95 0.169020
3 -43.725, 131.450 0.34445 0.95 0.058492
4 -57.992, 137.001 0.41920 0.95 0.110089
5 -61.28, 125.00 0.65433 0.95 0.370279

rr.confint.high adj.r.squared f.value f.df1 f.df2 p.value AIC
1 0.79674 0.67352 50.511 1 23 3.0692e-07 180.72
2 0.66239 0.46373 21.753 1 23 1.0753e-04 199.31
3 0.56048 0.31595 12.085 1 23 2.0423e-03 202.90
4 0.61539 0.39395 16.600 1 23 4.6763e-04 197.51
5 0.77529 0.63930 43.538 1 23 9.8692e-07 174.04

BIC n rr.label b_0.constant b_0 b_1 fm.method fm.class
1 184.38 25 FALSE -55.699 147.79 lm:qr lm
2 202.96 25 FALSE -50.242 136.13 lm:qr lm
3 206.56 25 FALSE -43.725 131.45 lm:qr lm
4 201.16 25 FALSE -57.992 137.00 lm:qr lm
5 177.69 25 FALSE -61.280 125.00 lm:qr lm

fm.formula fm.formula.chr x y group PANEL orientation
1 y ~ x y ~ x 0.64 97.00 1 1 x
2 y ~ x y ~ x 0.64 92.95 2 1 x
3 y ~ x y ~ x 0.64 88.90 3 1 x
4 y ~ x y ~ x 0.64 84.85 4 1 x
5 y ~ x y ~ x 0.64 80.80 5 1 x

�

7.3.12 Modifying Legends

Note that a legend was created for Fig 7.12 because of designation of groups in the initial

aesthetics. Legend characteristics generally need to be modified using theme(). For instance,
to change the legend location from the right-hand side of the plot to the the left-hand side, I

could use:

g1 + theme(legend.position = "left")

7.3.13 Multiple plots

We can placemultiple ggplots into a single graphics device using several approaches. I consider

two here: 1) facet functions from the ggplot2 package, and 2) ggplot extension functions from

the package cowplot.

7.3.13.1 Faceting

The functions facet_wrap() and facet_grid() can be used to generate a sequence of plot

panels.
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Example 7.7.

I will modify Fig 7.12 to demonstrate the use of facet_wrap().

1 g1 <- ggplot(fly.sex, aes(y = longevity, x = thorax,
2 group = Treatment)) +
3 geom_point(aes(colour = Treatment, shape = Treatment)) +
4 facet_wrap(vars(Treatment)) +
5 theme_classic() +
6 margin_theme() +
7 geom_smooth(method = "lm", se = F, aes(colour = Treatment)) +
8 labs(x = "Thorax length (mm)", y = "Longevity (Days)")
9 g1

`geom_smooth()` using formula = 'y ~ x'
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Figure 7.13: Demonstration of facet wrapping using the fly.sex dataset.

On Line 4 I specify that different panels should be created for each treatment level

using: facet_wrap(vars(Treatment)). This could also be accomplished using:
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facet_wrap(~Treatment).

�

7.3.13.2 cowplot functions

Multiple plots can also be assembled into a single graphical entity using functions from the

cowplot package. This requires creating separate plot objects and concatenating them in

cowplot::plot_grid().

Example 7.8.

Fig 7.14 shows summaries of US per capita CO2 emissions and GDP since the start of the

industrial revolution with two plots.

1 library(cowplot)
2 US <- world.emissions |>
3 filter(country == "United States")
4

5 g2 <- ggplot(US) +
6 geom_line(aes(year, co2/population), col = "dark red") +
7 theme_classic() + margin_theme() +
8 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
9 labs(x = "Year",

10 y = expression(paste("Per capita ", CO[2],
11 " emissions (tonnes x ", 10^6, ")")))
12

13 g3 <- ggplot(US) +
14 geom_line(aes(year, gdp/population), col = "blue") +
15 theme_classic() + margin_theme() +
16 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
17 labs(x = "Year", y = expression(paste("Per capita GDP")))
18

19 plot_grid(g2, g3)



7.3. GGPLOT2 257

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

18
00

18
50

19
00

19
50

20
00

Year

P
er

 c
ap

ita
 C

O
2 

em
is

si
on

s 
(t

on
ne

s 
x 

10
6 )

0

10000

20000

30000

40000

50000

18
00

18
50

19
00

19
50

20
00

Year

P
er

 c
ap

ita
 G

D
P

Figure 7.14: Two plots depicting US per capita trends in CO2 emissions and GDP.

The function plot_grid is used on Line 17 to conjoin the ggplot objects g2 and g3.

�

7.3.14 Univariate Distributional Summaries

A number of ggplot2 functions can be used to graphically summarize distributions of variables.

These include geom_hist() for histograms, geom_area() for area plots, geom_freq() for

frequency plots, geom_dotplot() for dot plots, and geom_density() for density plots.

Example 7.9.

Fig 7.15 provides a multi-plot distributional summary of the US CO2 data using a histogram,

an area plot, and a frequency plot. These are created as separate ggplot objects.

1 xlab <- expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")"))
2 Years <- factor(c(rep("1800-1854", 55), rep("1854-1908", 55),
3 rep("1908-1962", 55), rep("1962-2019", 55)))
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4

5 margin_theme2 <- function(){
6 theme(axis.title.y = element_text(hjust=0.6, vjust = 2.8, size = 10),
7 plot.margin = margin(t = 7.5, r = 7.5, b = 7.5, l = 15))
8 }
9

10 histogram <- ggplot(US, aes(co2, fill = Years)) +
11 geom_histogram(binwidth = 500) +
12 theme_classic() +
13 scale_fill_brewer(palette = "Blues") +
14 xlab(xlab) + ylab("Frequency") +
15 margin_theme()
16

17 areaplot <- ggplot(US, aes(co2, fill = Years)) +
18 geom_area(stat="bin") +
19 theme_classic() +
20 scale_fill_brewer(palette = "Spectral") +
21 xlab("") + ylab("Frequency") +
22 margin_theme2()
23

24 freqplot <- ggplot(US, aes(co2, colour = Years)) +
25 geom_freqpoly() +
26 theme_classic() +
27 scale_fill_brewer(palette = "Spectral") +
28 xlab("") + ylab("") +
29 margin_theme2()

The histogram, area plot, and frequency plot are created on Lines 10-15, 17-22, 24-

29, respectively. Note the use of a second margin theme (Lines 5-8) and the use of

ggplot2::scale_fill_brewer() to define specific RColorBrewer color palettes.

The plots are conjoined, with the area plot and frequency plot splitting the first row, and the his-

togramoccupying the entire second rowof the graphical device using cowplot::plot_grid().

title <- ggdraw() + draw_label(expression(paste(CO[2] , " in the US")),
fontface='bold')

top_row <- plot_grid(areaplot, freqplot, ncol = 2, labels = "AUTO")

plot_grid(title, top_row, histogram, rel_heights = c(0.2, 1, 1.2),
hjust = c(0,0,-0.6), nrow = 3, labels = c("", "", "C"))
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Figure 7.15: Distributional summaries of the US CO2 data from asbio::world.emissions.

�

7.3.15 Barplots

Barplots are straightforward to create in ggplot2 using the function geom_bar().

Example 7.10.

Consider the asthma dataframe from asbio. We first convert the time series to a long table

format using reshape2::melt(), and summarize it using dplyr::summarise().

1 library(reshape2); data(asthma)
2 asthma.long <- asthma |> melt(id = c("DRUG", "PATIENT"),
3 value.name = "FEV1",
4 variable.name = "TIME")
5

6 asthma.long$TIME <- factor(asthma.long$TIME,
7 labels = c("BASE",



260 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

8 paste("H", 11:18, sep = "")))
9

10 summary.FEV <- asthma.long |>
11 group_by(TIME, DRUG) |>
12 summarise(mean = mean(FEV1),
13 se = sd(FEV1)/sqrt(length(FEV1)),
14 meanmse = mean - se,
15 meanpse = mean + se)

In the code for Fig 7.16 below, I group by drug treatments group = DRUG (line one) and plot

bars using the mean values from summary.FEV using ggplot2::geom_bar() (Line 6). The

argument stat = "identity" allows bar heights to be represented by individual numbers,

in this case means. Use of stat = "identity" is required here. The argument position =
"dodge" creates side by side bar plots (Line 6).

1 g <- ggplot(summary.FEV, aes(x = TIME, y = mean, group = DRUG)) +
2 margin_theme() +
3 labs(y = "Forced Expiratory Volume (1 min)",
4 x = "Time Period")
5

6 g + geom_bar(stat = "identity", position = "dodge", aes(fill = DRUG))
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Figure 7.16: Barplot of the asthma data.

�

7.3.16 Interval Plots

The ggplot2 package allows implementation of interval plots.

Example 7.11.

As an initial demonstration of interval plots, we continue use of barplots from Example 7.10.

Overlaying errors on barplots requires the use of stat_summary() (Line 1) in the code below.

Outcomes from meanmse and meanpse in the summary.FEV dataset represent ̄𝑥 − 𝑆𝐸 and

̄𝑥 + 𝑆𝐸, respectively. These will define the lower and upper values of the error bars in interval

plot. They are called in the arguments ymin and ymax in the aesthetics of geom_errorbar()
(Line 5). The background color of the plot is changed on Line 4. The final result is shown in

Fig 7.17.

1 g + stat_summary(fun = "identity", geom = "bar",
2 position = position_dodge(width = .9),
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3 aes(colour = DRUG), fill = "white") +
4 theme(panel.background = element_rect(fill = gray(0.8))) +
5 geom_errorbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG),
6 width = 0.2, position = position_dodge(.9))
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Figure 7.17: Error bars overlaid on a bar plot of the asthma data.

�

Example 7.12.

Next we consider overlaying intervals on a line plot Fig (7.18). In the code below, lines connect

points at treatment means (Lines 2-3).

1 g + geom_point(size = 2, aes(colour = DRUG)) +
2 geom_line(aes(lty = DRUG, colour = DRUG)) +
3 theme_classic() +
4 margin_theme() +
5 geom_errorbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG),
6 width = 0.2)
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Figure 7.18: Error bars overlaid on a line plot of the asthma data.

�

Example 7.13.

Other geoms can be used to create interval plots, including the ggplot2 function

geom_crossbar(). In Fig 7.19 we show both raw data and summary standard error

crossbars.

g + geom_crossbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG,
fill = DRUG), alpha = .2) +

geom_point(data = asthma.long, aes(y = FEV1, x = TIME, colour = DRUG))
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Figure 7.19: Error cross bars overlaid on the asthma data.

Note that individual data points are rather difficult to distinguish in Fig 7.19. As a solution we

could plot points using using transparent colors, or jitter points with respect to the 𝑥-axis (Fig
7.20).

g + geom_crossbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG,
fill = DRUG), alpha = .2) +

geom_jitter(data = asthma.long, aes(y = FEV1, x = TIME, colour = DRUG),
alpha = .4, width = 0.15) +

theme_classic()
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Figure 7.20: Jitter and transparency added to points in Fig 7.19.
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7.3.16.1 Pairwise Comparisons

Results of statistical pairwise comparisons can be overlain on ggplot2 rendered boxplots

and interval plots using a number of approaches. The package ggpubr (Kassambara, 2023)

generates ggplot2-based “publication ready plots’ ’, including interval plots showing pairwise

comparisons. Examples given here largely follow those in the documentation for ggpubr.

Example 7.14.

Crampton et al. (1947) measured the lengths of odontoblasts (cells responsible for tooth

growth) in 60 guinea pigs with respect to three dosage levels of vitamin C (0.5, 1, and 2

mg/day), and two delivery methods, orange juice (OJ) or ascorbic acid (VC). The data are in the

dataframe ToothGrowth from the package datasets. In ToothGrowth dose contains dosages
and supp contains delivery levels.
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1 library(ggpubr)
2 df <- ToothGrowth
3 df$dose <- as.factor(df$dose)
4

5 bxp <- ggboxplot(
6 df, x = "dose", y = "len",
7 color = "supp", palette = c("#00AFBB", "#E7B800")) +
8 ylab(expression(paste("Odontoblast length (", mu,"g)"), sep = "")) +
9 xlab("Dosage (mg/day)") +

10 guides(color=guide_legend("Delivery:")) +
11 scale_y_continuous(expand = expansion(mult = c(0.05, 0.10)))
12

13 bxp + geom_pwc(
14 aes(group = supp), tip.length = 0,
15 method = "t_test", label = "{p.adj.format}{p.adj.signif}",
16 p.adjust.method = "bonferroni", p.adjust.by = "panel",
17 hide.ns = TRUE
18 )

In the code above, we have the following important steps:

• On Lines 1-3, I bring in the ggpubr package (Line 1), rename the dataframe ToothGrowth
to be df and coerce the dose column to be a factor.

• On Lines 5-7, I use the function ggpubr::ggboxplot() to define basic plot characteris-
tics.

• On Lines 8-11, nuances are added to the plot including customized axis labels (Lines

8-9), a customized legend title (Line 10), and an alteration to the axis scale (Line 11).

• On Lines 13-18, annotations for pairwise comparisons of delivery methods (OJ and VC)
within dosages are added to the graph using the function ggpubr::geom_pwc().

• On Line 14, I specify that I want delivery methods (in supp) compared, and indicate that

I don’t want lines extending to the compared levels from the label lines (for comparison,

see Fig 7.23).

• On Line 15, I indicate the type of test to be used in delivery method comparisons, and the

labeling format. "{p.adj.format}{p.adj.signif}" indicates that both the adjusted

p-value and the significance level for the adjusted p-value should be printed.

• On Lines 16-17, I specify use of the Bonferroni correction for simultaneous inference for

three tests, and to not print results that are non-significant.

The result is shown in Fig 7.21.
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Figure 7.21: Boxplot showing pairwise comparison of delivery levels in dosage for the

Toothgrowth dataframe.

Below we consider a more complex example that compares both delivery methods (supp) and
dosage levels (dose). This is accomplished by applying ggpubr::geom_pwc() twice (Lines

3-7 and Lines 11-15) and printing both results (Fig 7.22).

1 # 1. Add p-values of OJ vs VC in each dose group
2 bxp.complex <- bxp +
3 geom_pwc(
4 aes(group = supp), tip.length = 0,
5 method = "t_test", label = "p.adj.format",
6 p.adjust.method = "bonferroni", p.adjust.by = "panel"
7 )
8 # 2. Add pairwise comparisons between dose levels
9 # Nudge up the brackets by 20% of the total height

10 bxp.complex <- bxp.complex +



268 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

11 geom_pwc(
12 method = "t_test", label = "p.adj.format",
13 p.adjust.method = "bonferroni",
14 bracket.nudge.y = 0.2
15 )
16 # 3. Display the plot
17 bxp.complex
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Figure 7.22: Boxplot showing pairwise comparison of delivery levels and delivery levels in

dosage for the Toothgrowth dataframe.

In the codebelow,we create an interval plotwith abarplot appearanceusingggpubr::ggbarplot()
(Fig 7.23. Note that this requires a different approach for customizing the title of the legend

(Line 7).
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1 bp <- ggbarplot(
2 df, x = "supp", y = "len", fill = "dose",
3 palette = "npg", add = "mean_sd",
4 position = position_dodge(0.8)) +
5 ylab(expression(paste("Odontoblast length (", mu,"m)"), sep = "")) +
6 xlab("Delivery method") +
7 scale_fill_discrete(name = "Dosage:")
8

9 bp +
10 geom_pwc(
11 aes(group = dose), tip.length = 0.05,
12 method = "t_test", label = "p.signif",
13 bracket.nudge.y = -0.08
14 ) +
15 scale_y_continuous(expand = expansion(mult = c(0, 0.1)))
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Figure 7.23: Barplot showing pairwise comparison of dosage levels in delivery methods for

the Toothgrowth dataframe. Bar heights are means, errors are standard deviations.

�
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CAUTION!

The function ggpubr::geom_pwc() can be potentially misused, illustrating the need

for clear explanations (or understanding) when applying statistical algorithms. The

default test specification in geom_pwc() is the Wilcox test, which will seldom be the

most powerful method for comparing shifts in location for treatments (although it is

strongly resistant to violations of normality). The argument test = t_test (specified
in Figs 7.21-7.23) runs 𝑡-tests in isolation for each pairwise comparison, and thus will

not utilize an omnibus ANOVAmean squared error, reducing power. The Bonferroni

𝑝-value adjustment method used in Figs 7.21-7.23 is also famous for its low power.

Given this situation, it may be most prudent to use ggpubr::geom_pwc() as a graph-
ical framework into which summaries, including 𝑝-values can be inserted manually.

This can be done with the function ggpubr::stat_pvalue_manual()whose usage is

demonstrated here.

7.3.17 Trellis Plots with Faceting

Like the package lattice, ggplot2 contains functions for making trellis plots. We will use this

approach to examine individual patient responses over time in the asthma dataset.

# subset data to allow readable plots
asthma.long.a <- asthma.long |>

filter(PATIENT %in% 201:208)

Trellising can be enabled by using the ggplot2 functions facet_wrap() and facet_grid().
In Fig 7.24 we define faceting within facet_grid() using the PATIENT column in the data

subset asthma.long.a. The function ggplot2::vars() in facet_grid() is analogous to the
use of aes() in geoms.

1 g <- ggplot(asthma.long.a, aes(y = FEV1, x = TIME, colour = DRUG,
2 group = DRUG)) +
3 geom_point() +
4 geom_line() +
5 theme_light() + margin_theme() +
6 theme(axis.text.y = element_text(size=rel(0.7))) +
7 facet_grid(rows = vars(PATIENT)) +
8 scale_colour_brewer(palette = "Dark2") +
9 ylab("Forced Expiratory Volume (1 min)") +

10 xlab("Time period")
11 g

https://www.datanovia.com/en/blog/how-to-add-p-values-to-ggplot-facets/
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Figure 7.24: A trellis plot showing individual patient responses over time from the asthma
dataset.

7.3.18 Multivariate Distributional Summaries

Bivariate summaries can be shown in many ways using a ggplot2 approach.

Example 7.15.

In Fig 7.25, I insert density grobs (graphical objects) on the margins of a scatterplot for

five European countries using the cowplot functions axis_canvas(), insert_xaxis_grob(),
insert_xaxis_grob(), and gg_draw(). The right margin shows GDP distributions for each

country, whereas the top margin shows CO2 emission distributions for each country. I also

change symbol sizes with year in the main graph. Larger symbols indicate more recent years.

1 europe <- world.emissions |>
2 filter(country == c("France", "Italy", "Germany", "United Kingdom")) |>
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3 filter(year <= 2019 & year > 1950) # comparable data
4

5 pmain <- ggplot(europe, aes(x=co2, y=gdp, color= country)) +
6 geom_point(aes(size = year), alpha = .6) +
7 xlab(xlab) + ylab("GDP (International dollars)") +
8 margin_theme() +
9 theme_classic()

10

11 xdens <- axis_canvas(pmain, axis = "x") +
12 geom_density(data = europe, aes(x = co2, fill = country), alpha=0.6,
13 size=.2)
14

15 ydens <- axis_canvas(pmain, axis = "y") +
16 geom_density(data = europe, aes(y = gdp, fill = country), alpha=0.6,
17 size=.2)
18

19 p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"),
20 position = "top")
21 p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"),
22 position = "right")
23 ggdraw(p2)
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Figure 7.25: Bivariate summaries for European countries from the asbio::world.emissions
dataset.
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7.3.19 Maps

The ggplot2 ecosystem has some support for mapping, including import of ARC-GIS shape files,

and creation of map polygons. The function sf::st_read() allows loading of simple spatial

features, including shapefiles, and the package ggspatial provides a number for creating useful

maps under a ggplot2 framework.

Example 7.16.

As an example we will create a map of a small stream network in southwest Idaho named

Murphy Creek. Data concerning the creek, including shapefiles, is contained in the package

streamDAG (Aho et al., 2023b).

library(sf); library(ggspatial); library(streamDAG)
mur_sf <- st_read(system.file("shape/Murphy_Creek.shp",
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package="streamDAG"))
data(mur_coords)
coords <- mur_coords[,c(2,3)]

Reading layer `Murphy_Creek' from data source
`C:\Users\ahoken\AppData\Local\R\win-library\4.5\streamDAG\shape\Murphy_Creek.shp'
using driver `ESRI Shapefile'

Simple feature collection with 2 features and 2 fields
Geometry type: LINESTRING
Dimension: XY
Bounding box: xmin: 512860 ymin: 4789000 xmax: 514720 ymax: 4789300
Projected CRS: NAD83 / UTM zone 11N

The function ggplot2::geom_sf() (Line 2 below) can be used to draw different geometric

objects depending on features present in the data, e.g., points, lines, or polygons. For the

current case a line is generated. The function ggplot2::expand_limits() (Line 6) is used to

increase the spatial range of the 𝑦-axis which otherwise would be extremely narrow (since a

singleW to E trending line, representing thewatershed, is being generated by geom_sf()). The
ggspatial functions annotation_scale() and annotation_north_arrow() provide spatially
explicit scalebars and north-indicating arrows, respectively (Lines 8-9). The final product is

shown in Fig 7.26.

1 g <- ggplot(mur_sf) +
2 geom_sf(colour = "lightblue", lwd = 2) +
3 theme_classic() +
4 geom_point(data = coords, aes(x = E, y = N), shape = 21,
5 fill = "orange", size = 2.5) +
6 expand_limits(y = c(4788562,4789700)) +
7 ylab("") + xlab("") +
8 annotation_scale() +
9 annotation_north_arrow(pad_x = unit(10.5, "cm"), pad_y = unit(6.6, "cm"))

10 g
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Figure 7.26: Map of the Murphy Creek drainage system in southwest Idaho (outlet coordinates:

43.71839 oN, 116.13747 oW).
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7.3.20 Animation

Animations in ggplot2 can be created using looping strategies applied in Ch 6. Looping will be

explicitly considered in the context of functions in Chapter 8.

Example 7.17.

As an initial demonstration, we reconsider the asthma data (Fig 7.16). We first construct a

function, asthma.plot()which will render a ggplot. The lone argument of asthma.plot(),
upper, defines the upper time limit of under consideration in the longitudinal asthma drug

study (Line 3). The upper argument is called in geom_line() (Lines 5-6) to subset, if necessary,
the underlying data. Vital to the animation is the print.ggplot() function (Line 12). Failure

to include this code will create an empty animation.

1 summary.FEV$time <- rep(c(0,11:18), each = 3)
2

3 asthma.plot <- function(upper){
4 a <- ggplot() +
5 geom_line(data = summary.FEV[summary.FEV$time > 10 &
6 summary.FEV$time <= upper,],
7 aes(x = time, y = mean, colour = DRUG)) +
8 ylim(2.6, 4) +
9 xlim(11, 18) +
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10 margin_theme() +
11 labs(y = "Forced Expiratory Volume (1 min)",
12 x = "Time (Hrs)")
13 print(a)
14 }

Next, we create a function that runs asthma.plot() for a range of values for upper. The
function consists of a loop run by lapply() (lines 2-3). The final lines of code (lines 8-9) allow
the animation to be saved using the function saveGIF() from the package animation5.

1 asthma.animate <- function() {
2 lapply(12:18, function(i){
3 asthma.plot(i)
4 })
5 }
6

7 # run animation
8 asthma.animate()
9

10 # save frames into one GIF:
11 library(animation)
12 saveGIF(asthma.animate(), interval = 1, movie.name="asthma.gif")

The animation result is shown in Fig 7.27.

5As noted in Ch 6, use of animation::saveGIF requires installation of open source software ImageMagick or

GraphicsMagick (see ?saveGIF).

http://www.imagemagick.org/script/convert.php
http://www.graphicsmagick.org
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Figure 7.27: Animation demonstration using the asthma dataset.

�

Amazing animations can be created with the package gganimate. These are demonstrated

using several examples.

Example 7.18.

In this example we create a scatterplot animation for the world emissions dataset. In the code

below, steps particularly important to the animation occur on Lines 14-17.

• On Line 14 the plot title is modified as the animation progresses, allowing tracking

of years. The code title = 'Year: {frame_time}' is a gganimate conven-

tion for extracting corresponding time sequence values (in this case the column

world.emission$year) for a projection.
• On line 16 The function gganimate::transition_time() calls frame transitions be-

tween specific point in time in the column year. Usefully, the gganimate sets the transi-

tion time between the states in transition_time() to correspond to the actual time

difference between them.
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• On line 17 ease_aes() is used to linearly smooth the animation (in terms of coloration

and the geometric positioning of features) between animation frames. The function is

based on analogous functions from the package tweener.

The package gapminder contains rational color designations (i.e., variations on prime colors

within continents) for 142 countries. Countries without a color designation are colored gray

by scale_colour_manual().

1 library(gganimate)
2 library(gapminder)
3 world.data.sub <- world.emissions |>
4 filter(continent != "Redundant") |>
5 filter(year > 1950)
6

7 g <- ggplot(world.data.sub, aes(x = gdp, y = co2, size = population,
8 colour = country)) +
9 geom_point(alpha = 0.7, show.legend = FALSE) +

10 scale_colour_manual(values = country_colors) +
11 scale_size(range = c(2, 12)) +
12 scale_x_log10() + scale_y_log10() +
13 facet_wrap(~continent) +
14 labs(title = 'Year: {frame_time}', x = 'GDP') +
15 ylab(bquote(CO[2])) +
16 transition_time(as.integer(year)) +
17 ease_aes('linear')
18 margin_theme()
19 g

The final result is shown in Fig 7.28.
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Figure 7.28: Animated scatterplot of CO2 levels over time for countries within continents.

Symbol size scaled by population size.

�

Example 7.19.

Thenext example usesgganimate to animate variation in CO2 levels over timewithin continents,

using boxplots.

1 g <- ggplot(world.data.sub, aes(x = continent, y = co2,
2 group = continent)) +
3 geom_boxplot(aes(fill = continent), show.legend = FALSE) +
4 scale_y_log10() +
5 labs(title = 'Year: {frame_time}', x = '',
6 y = "CO\U2082") +
7 theme(axis.text.x = element_text(angle = 50, hjust = 1,
8 vjust = 0.9, size = 12)) +
9 transition_time(as.integer(year))

10 g

The final result is shown in Fig 7.29.
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Figure 7.29: Animated boxplot of CO2 levels over time for countries within continents.

�

Example 7.20.

As a final (rather complex) example, I animate the non-perennial character of Murphy Creek

(Fig 7.26) over time.

To prepare for making the map animation, I first bring in a dataset that documents the pres-

ence/absence of surface water = {0, 1} at 28 locations (i.e., nodes) over 1163 time steps,

mur_node_pres_abs (Line 1). The 27 stream sections bounded by the the 28 nodes are de-

fined as stream segments. I select from these time designations, at even intervals, to create a

data subset of 250 time steps (Lines 2-8).

1 data(mur_node_pres_abs)
2 u <- unique(mur_node_pres_abs$Datetime)



282 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

3 n <- length(u)
4 frames <- 250
5 times.sub <- u[round(seq(1, n, length = frames),0)]
6

7 w <- which(mur_node_pres_abs$Datetime %in% times.sub)
8 mnpa.sub <- mur_node_pres_abs[w,]

In the code below, the functionsf::st_coordinates() is used to pull spatial coordinates from
theMurphy Creek shapefile underlying themap in Fig 7.26. I also use several functions from the

streamDAG package, including streamDAGs(), which creates a graph-theoretic representation

Murphy Creek (see Aho et al. (2023b)), and thus defines how the stream flows from location to

location. The function streamDAG::STIC.RFimpute() is a wrapper for the random forest al-

gorithm missForest::missForest(), and allows imputation of missing stream presence/ab-

sence data from the dataset mur_node_pres_abs. The function arc.pa.from.nodes() from
streamDAG creates stream segment surface water presence/absence outcomes based on data

from the downstream bounding node of each segment (approach = "dstream"). The func-
tion vector_segments() from streamDAG is used to create the dataframe vs that contains
arcs designations for shapefile coordinates in sf.coords, based on coordinates in the object

node.coords, and the function assign_pa_to_segments() adds surface water presence/ab-
sence designations to vs based on outcomes from the object arc.pa, whew.

1 mur_graph <- streamDAGs("mur_full")
2 # impute missing presence/absence data
3 out <- STIC.RFimpute(mnpa.sub[,-1])
4 mur.pa.sub <- out$ximp
5 # arcs from nodes
6 arc.pa <- arc.pa.from.nodes(mur_graph, mur.pa.sub, approach = "dstream")
7

8 node.coords <- data.frame(mur_coords[,(2:3)])
9 row.names(node.coords) <- mur_coords[,1]

10 sf.coords <- st_coordinates(mur_sf)[,-3]
11

12 vs <- vector_segments(sf.coords, node.coords, realign = TRUE,
13 colnames(arc.pa), arc.symbol = " -> ")
14 datetime <- mnpa.sub$Datetime
15 vsn <- assign_pa_to_segments(vs, frames, arc.pa, datetime = datetime)

Using the data summaries created from the steps above, I can finally create an animated ggplot

map.

1 g <- ggplot(mur_sf) +
2 geom_sf(colour = "gray", lwd = 1.8) +
3 theme_classic() +
4 geom_line(data = vsn, aes(x = x, y = y, group = arc.label,
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5 colour = as.factor(Presence)),
6 show.legend = FALSE, lwd = 1.5) +
7 scale_colour_manual(values = c("orange","lightblue")) +
8 geom_point(data = node.coords, aes(x = E, y = N), shape = 21,
9 fill = "white", size = 1.4) +

10 expand_limits(y = c(4788562,4789700)) +
11 annotation_scale() +
12 labs(title = "Date: {frame_time}", x = "", y = "") +
13 annotation_north_arrow(pad_x = unit(10.5, "cm"),
14 pad_y = unit(6.6, "cm")) +
15 transition_time(as.Date(vsn$Time))

The final result, Fig 7.30, shows changing patterns of surface water presence at the Murphy

Creek network during the summer of 2019.

Figure 7.30: Paterns of drying at Murphy Creek, Idaho shown with an animated map. Blue

segments indicate the presence of surface water. Gray segments indicate missing data.

�
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Exercises

1. Complete the following data management steps on the asbio::world.emissions data.
(a) Eliminate redundant rowsusingcontinent != 'Redundant' anddplyr::filter.
(b) Filter further to subset the data to the years 1955-2019.

(c) Filter further to subset the data to 8 countries of interest (your choice).

(d) Name the dataset emissions.sub.
(e) For the emissions.sub dataset, plot CO2 emissions as a function of year in a scat-

terplot. Save the ggplot as an object (e.g., g).

2. ContinuingQuestion1, overlay a linear regressionmodel ongusinggeom_smooth(method
= "lm").
(a) Extract fitted model components using g + stat_poly_eq(formula = y ~ x,

geom = "debug") from library gginnards. What is the model slope?

(b) Interpret the meaning of the shaded envelope around the line.

(c) Annotate the model onto the graph using: g + stat_poly_eq() from library ggp-

misc.

3. Continuing Question 1, (1) color points in g by country (use transparency to allow

viewing of points laying atop each other), and (2) vary point size by population size.

4. Continuing Question 1, add a label in g identifying US emissions in 2005.

5. Continuing Question 1, use geom_hline() and/or geom_vline() to add reference lines

to g (your choice as to relevant 𝑥 or 𝑦-axis location).

6. Continuing Question 1, alter the the 𝑦-axis limits in g (your choice of limits).

7. Continuing Question 1, create (1) a boxplot, and (2) an interval plot showing CO2 emis-

sions as a function of country. Interpret the meaning of the hinges, centers, and whiskers

of the boxplot and interpret the “errors” in the interval plot.

8. (Advanced) For the dataframe npk in the package datasets, use functions in the the

package ggpubr to overlay results of pairwise comparisons of population means on

interval plots. Specifically:

(a) Use ggbarplot() to make a barplot showing mean Yields and standard errors as a

function of nitrogen N and phosphate P. Vary bar colors using P. Create appropriate
axis and legend labels.

(b) Overlay pairwise comparisons for both N and P levels on the barplot using the

function geom_pwc(). Specify method = t_test since multiple tests for N will not

occur within levels of P.

9. For the asbio::goats dataframe, use ggplot approaches to…
(a) Make plots of the distribution of NO3 using two of the following functions:

geom_area(), geom_freq(), geom_dotplot(), or geom_density().
(b) Create a scatterplot of NO3 as a function of feces, Change symbol sizes to reflect the

values in organic.matter.
(c) Plot NO3 and organic.matter as simultaneous functions of feces by adding a

second y-axis.
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10. Using gganimate, and the asbio::asthma dataframe, track subject FEV1 levels over

time with geom_point(). Use faceting to distinguish drug levels.
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Chapter 8

Functions

“A computer will do what you tell it to do, but that may be much different from what

you had in mind.”

- JosephWeizenbaum, Important early software developer and AI ethisist

8.1 Introduction to Functions

In computer programming, a function is a set of instructions for performing a specific task, or

providing specific output. Essentially all processes in R are run via functions, prompting the

idiom: “Everything that happens in R is a function call” (Chambers, 2008). For example, the

command: x <- 2, assigns the label x to the numeric value 2. This is actually accomplished,

however, via the function `<-`. That is, one could rewrite x <- 2 as:

`<-`(x, 2)
x

[1] 2

Similarly, the + operator calls the underlying function `+`.

`+`(2, 2)

[1] 4

Function call translations, for example, from 2 + 2 to `+`(2, 2), are made silently through

the R-interpreter1, making it unnecessary to compile R code into executable files (see Ch 9).

1Chambers (2008) describes function evaluation as a three step process: read→ parse→ evaluate, and refers

to the programmatic mechanisms underlying this process as the R-evaluator.

287
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8.1.1 function() and Function Base Types

Generally speaking, an R function –at the risk of sounding repetitive– is a function defined by

the function function(), . Arguments inR functionswill be contained in a set of parentheses

in the call to function() itself. The function contents follow, generally delineated by curly

brackets. Thus, we have the form:

function.name <- function(arg.1, arg.2,...., arg.n){function contents}

Recall fromChapter 2 that there are threeR base types specific to functions: closure, special,
and builtin. Functions of base types special and builtin are constrained to the base

package, and include primitive functions built into the R system, and implemented in C. Types

builtin and special can be distinguished as functions that do and do not evaluate their

arguments, respectively (R Core Team, 2024b).

Example 8.1. The code below allows listing of R primitive functions in the base package

(Chambers, 2008).

1 base.objs <- objects("package:base", all = TRUE)
2 prim.objs <- base.objs[sapply(base.objs, function(x) is.primitive(get(x)))]

On Line 1, a character vector containing base functions named base.objs is generated using

the function objects(). Strings from base.objs are used to test if the functions are primitive

by using is.primitive() as the FUN argument in sapply(). Boolean outcomes from the test

are used to subset base.objs into the object prim.objs.

The summarization is continued in the chunk below.

1 base.types <- split(prim.objs,
2 sapply(prim.objs,
3 function(x) typeof(get(x))))
4

5 sapply(base.types, length)

builtin special
166 42

On Line 1, the function split() is used to split data in prim.objs into base type categories
using typeof(get())within sapply() (Lines 2 and 3). Numbers of items in these groups are

tabulated using sapply() again (Line 5). There are currently 166 builtin and 42 special
primitive functions in R.

Here are the first 20 special primitive functions in the base package:

base.types$special[1:20]

[1] "$" "$<-" "&&" ".Internal" "::"
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[6] ":::" "@" "@<-" "[" "[["
[11] "[[<-" "[<-" "{" "||" "~"
[16] "<-" "<<-" "=" "break" "call"

Here are the first 20 builtin primitive functions:

base.types$builtin[1:20]

[1] "-" "!" "!="
[4] "%%" "%*%" "%/%"
[7] "&" "(" "*"
[10] "...elt" "...length" "...names"
[13] ".C" ".cache_class" ".Call"
[16] ".Call.graphics" ".class2" ".External"
[19] ".External.graphics" ".External2"

Clearly, primitive functions of base type specialand builtin include conventional operators
(with bounding accent grave characters). For example, `$` has base type special,

typeof(`$`)

[1] "special"

and `+` has base type builtin.

typeof(`+`)

[1] "builtin"

�

Primitive functions generally make calls to the function .Primitive(), which, in turn, identi-

fies an underlying C routine used for evaluating the outer function. For example, we see that

`+`, as codified in R, calls a C routine identified with "+".

`+`

function (e1, e2) .Primitive("+")

8.1.2 Base Type closure

Primitive functions of type special or builtin cannot be created by users outside of the R

development core team. Thus, base type closure represents the only kind of function R-users

can actually create and easily modify. The name “closure” refers to the programming style

underlying these functions, with each assigned to a particular environment with local internal
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objects (see Section 5.4 in Chambers (2008)). Approaches for creating a closure function that

calls a user-defined primitive function are considered in Section 9.3.2.

Example 8.2.

Consider the simple homemade function square.me()2.

square.me <- function(x){
x^2

}

square.me(4)

[1] 16

typeof(square.me)

[1] "closure"

�

Functions of base type closurewill have three components.

• The formals constitute arguments that control the function. These can be accessed via

the function formals(). For instance,

formals(square.me)

$x

The formals of a function will have a pairlist base type.

typeof(formals(square.me))

[1] "pairlist"

• The body constitutes the actual function code. The function body() returns the body of
a function as an unevaluated expression.

body(square.me)

{
x^2

}

• Recall that an environment is a special R storage system, and that only objects in the

“current” environment (Section 8.8.1.1.1) can be directly accessed using their object

2A number of resources exist for debugging R functions, including the function debug(). Commonly reported

errors for functions containing tidyverse code are given at the A future for R website.

https://cran.r-project.org/web/packages/future/vignettes/future-4-issues.html
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names (Section 2.3.3). When a function name is defined at the “top level” in an R session

(e.g., outside of a package or the body of a function), its environment will be the global

environment, .GlobalEnv. The global environment is maintained throughout a session

and can be saved across sessions using, for instance, the function save.image() (Section
2.8.2). Environments of functions can be checked, created, or changed using the function

environment(). R environments are thoroughly considered in Section 8.8.1.

The environment of square.me() is the global environment.

environment(square.me)

<environment: R_GlobalEnv>

Whereas the environment of the function mean() is the base package.

environment(mean)

<environment: namespace:base>

Functions in base, including mean(), are accessible, because the base package namespace is

loaded automatically into a session (along with most of the R distribution packages) upon

opening R (see Section 8.8).

isNamespaceLoaded("base")

[1] TRUE

�

Notably, formals(), body() and environment()will all return NULL for primitive functions,

because these call external C code directly.

formals(`+`)

NULL

body(`+`)

NULL

environment(`+`)

NULL

Example 8.3.

As a biological example, we will create a function for calculating sizes of biological populations

under geometric growth. The geometric growth equation (Eq. (8.1)) is often used to represent

population growth for a species with unlimited resources and non-overlapping generations:

𝑓(𝑡) = 𝑁0𝜆𝑡, (8.1)



292 CHAPTER 8. FUNCTIONS

where: 𝑁0 = initial number of individuals, 𝜆 = the geometric rate of increase, and 𝑡 = the

number of time intervals or generations. We have:

Geo.growth <- function(N.0, lambda, t){
Nt <- N.0 * lambda^t
Nt

}

Note that the function has three arguments: N.0, lambda, and t.

A user of Geo.growth()must specify each of these arguments. The first line of code in the

function body solves 𝑁0𝜆𝑡. Importantly, the second (last) line of body code specifies the

object we actually want returned, Nt. Without a “return value” nothing will be returned by the

function. If one requires multiple return objects, then one can place them in single suitable

container like a list.

To increase clarity, one should place the first curly bracket on same line as the arguments, and

place last curly bracket on its own line. Readability can also be improved with the use of tabs

and spaces. Note that I have indented lines containing related operations. This distinguishes

those lines from the first (argument) line and the end (return) line. Note also that spaces are

placed after commas, and before and after operators, including the assignment operator. This

is also good general practice for function writing3.

Below we run the function for different values of N.0, lambda, and t.

Geo.growth(N.0 = 100, lambda = 1.2, t = 20)

[1] 3833.8

Geo.growth(N.0 = 30, lambda = 0.2, t = 3)

[1] 0.24

Geo.growth(N.0 = 30, lambda = 1, t = 3)

[1] 30

�

8.2 Environments within Functions: Global vs. Local Vari-

ables

Because R objects are lexically scoped (Section 1.4.1.2), object names (including function

names) are constrained to particular environments (Section 2.3.3). Global variables are objects

3A good R style guide can be found at: (https://google.github.io/styleguide/Rguide.html).

https://google.github.io/styleguide/Rguide.html
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that exist within the global (session) environment and consequently are broadly accessible,

whereas local variables are only accessible in particular settings. Objects defined within a

function, including arguments, are (generally) local to that function, and thus are accessible

only within the body of the function.

Example 8.4.

We see that the object N.t, which was defined in the last line of Geo.growth(), is local to that
function, since it cannot be detected in the global environment.

Nt

Error: object 'Nt' not found

Objects local to a function (and their values) can be listed by including a call to ls.str()
within the function.

Geo.growth <- function(N.0, lambda,t){
Nt <- N.0 * lambda^t
ls.str()

}

Geo.growth(N.0 = 30, lambda = 1, t = 3)

lambda : num 1
N.0 : num 30
Nt : num 30
t : num 3

Global variables can be assigned in functions using the super-assignment operator, <<-, al-
though I have found the need for this operator to be rare (but see Section 11.2.1). The function

environment and the execution environment within a function as it runs, are reconsidered in

Section 8.8.1.1.1.

Geo.growth <- function(N.0, lambda,t){
Nt <<- N.0 * lambda^t
Nt

}

g <- Geo.growth(N.0 = 30, lambda = 1, t = 3)
Nt

[1] 30

�

Example 8.5.

The apply family of functions for data management, including apply(), tapply(), sapply()
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and lapply() (Section 4.1.1) allow inclusion of user-defined functions (see Example 8.1

from earlier in this chapter). The function stan() below centers and scales (standardizes)

outcomes. That is, each element in the dataset is subtracted from its mean, and divided by

its standard deviation). We can call stan()within apply(), using the latter function’s third
(FUN) argument.

stan <- function(x){
(x - mean(x))/sd(x)

}

out <- apply(Loblolly[,1:2], 2, stan)

As a consequence of the transformation, columns in the object outwill the same mean (zero),

and the same variance (one)

apply(out, 2, mean) # zero with rounding error

height age
1.6687e-16 1.8508e-17

apply(out, 2, var)

height age
1 1

�

Example 8.6.

Below is a function called stats() that will simultaneously calculate a large number of distinct

summary statistics.

1 stats <- function(x, digits = 5){
2 require(asbio)
3 ds <- data.frame(statistics = round(c(length(x), min(x), max(x),
4 mean(x), median(x), sd(x), var(x),
5 IQR(x), sd(x)/sqrt(length(x)),
6 kurt(x), skew(x)), digits))
7 rownames(ds) <- c("n", "min", "max", "mean", "median", "sd",
8 "var", "IQR", "SE", "kurtosis", "skew")
9 ds

10 }

Note that the function contains two arguments (Line one): a call to a numeric data vector, x,
and the number of significant digits to be used in printing the output. Because digits has been
given a default value (digits = 5), only the first argument needs to be specified by the user. The

first line of code in the body of the function (Line 2) indicates that package asbio is required
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by the function (the package contains the functions asbio::skew() and asbio::kurt() for
calculating the data skew and kurtosis, respectively. In Lines 3-8 a dataframe is created called

ds. This object has one column called statistics, that will contain numeric entries for eleven

statistical summaries of x. The summaries are rounded to the number of digits specified in

digits. Lines 7-8 define the row names of ds. These are the names of the statistics calculated

by the function. The last line of code in the body (Line 9) prints ds.

We can readily apply stats() to a single numeric column.

stats(Loblolly[,1])

statistics
n 84.00000
min 3.46000
max 64.10000
mean 32.36440
median 34.00000
sd 20.67360
var 427.39793
IQR 40.89500
SE 2.25568
kurtosis -1.47347
skew -0.06434

Or apply the function to multiple columns, for instance, by calling by calling stats()within

apply():

apply(Loblolly[,c(1:2)], 2, stats)

$height
statistics

n 84.00000
min 3.46000
max 64.10000
mean 32.36440
median 34.00000
sd 20.67360
var 427.39793
IQR 40.89500
SE 2.25568
kurtosis -1.47347
skew -0.06434

$age
statistics

n 84.00000
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min 3.00000
max 25.00000
mean 13.00000
median 12.50000
sd 7.89998
var 62.40964
IQR 15.00000
SE 0.86196
kurtosis -1.37375
skew 0.18925

�

8.3 Useful Functions for Writing Functions

8.3.1 switch()

Auseful tool for functionwriting is switch(). It evaluates and switches amonguser-designated

alternatives which can be defined in a function argument.

Example 8.7.

The function below switches between five different estimators of location (i.e., estimators of a

typical or central value from a sample). These are: the sample mean, a trimmed mean (using

10% trimming), the geometric mean, the median, and Huber’s𝑀-estimator. See Chapter 4 in

Aho (2014) for details concerning these estimators.

1 location <- function(x, estimator){
2 require(asbio)
3 switch(estimator,
4 mean = mean(x), # arithmetic mean
5 trim = mean(x, trim = 0.1), # trimmed mean
6 geo = exp(mean(log(x))), # geometric mean (use for means of rates)
7 med = median(x), # median
8 huber = huber.mu(x), # Huber M-estimator
9 stop("Estimator not included"))

10 }

location(Loblolly[,2], "geo")

[1] 10.198

location(Loblolly[,2], "trim")

[1] 12.765
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Important to the function above is the pairing of the estimator argument in the overall

function (Line 1) and a call to estimator in the first argument of switch (Line 3). As a final
component of switchwe address the contingency that a location estimator is specified that

is not codified in the function. This is done using the stop() function with an appropriate

message (Line 9).

�

8.3.2 match.arg()

It is possible to specify partial matching for argument designations using the function

match.arg().

Example 8.8.

For instance, what if we only knew (or only wanted to specify) the first couple letters for the

specifiable names in the estimator argument in the function, location() from Examole
\@ref(exm:exm-exm-f4)? We could specify a step like the following.

indices <- c("mean", "trim", "geo", "median", "huber")
method <- match.arg(estimator, indices)

This is incorporated into location() on Lines 3-4 below. Note also the change in the first

argument ofswitch fromestimator (Line 5), whichmayhave incomplete spelling of a location

estimator name, to method, which will contain the complete index names from index.

1 location <- function(x, estimator){
2 require(asbio)
3 indices <- c("mean", "trim", "geo", "median", "huber")
4 method <- match.arg(estimator, indices)
5 switch(method,
6 mean = mean(x), # arithmetic mean
7 trim = mean(x, trim = 0.1), # trimmed mean
8 geo = exp(mean(log(x))), # geometric mean (use for means of rates)
9 med = median(x), # median

10 huber = huber.mu(x), # Huber M-estimator
11 stop("Estimator not included"))
12 }

Now we could do something like:

location(Loblolly[,2],"t")

[1] 12.765

location(Loblolly[,2],"h")
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[1] 13

�

8.3.3 ...

The triple dot (...) operator4 allows specification of arguments from an existing function

from within another function. As a result, the operator is often used for writing wrapper

functions (functions intended to remotely control secondary, embedded, functions).

Example 8.9.

Imagine you wished to create a wrapper for the function plot() that allowed simultane-

ous computation and customized plotting of a simple linear regression model. We could do

something like:

1 plot.reg <- function(x, y, ...){
2 reg <- lm(y ~ x)
3 plot(x, y, ...)
4 abline(reg)
5 }

The first two formal arguments x and y on line Line 1, establish plotting coordinates of points,

and define the outcomes for the explanatory and response variables, respectively. The third

argument is the triple dot operator (Line 1). In the first line in the body of the function (Line

2) we create a general linear regression model using the function lm(). Line 3 creates a

plot and, importantly, calls the triple dot operator from the arguments in plot.reg(). This
allows specification of any possible plot() arguments, as arguments within plot.reg(). For
instance, in the usage of plot.reg() below, I specify the x and y axis labels, a plotting character
type, and symbols colors (Fig 8.1). The last line of code (Line 4) plots the regression line.

with(Loblolly, plot.reg(age, height, pch = 19, col = as.numeric(Seed),
ylab = "Height (ft)", xlab = "Age (yrs)"))

4This operator is not the same as the C-internal ... base type (Section 2.3.6).
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Figure 8.1: Representation of loblolly pine tree height as a function of age. Regression fit

overlaid. Seed types are distinguished with colors.

�

8.3.4 invisible()

The invisible() function can be useful when one wishes to have results computed and saved

but not necessarily printed.

Example 8.10.

Assume that wewant to retain plot.reg() as a plotting function, but wish to have potential ac-

cess to actual statistical summaries from the regression model. We could rewrite plot.reg()
as:

1 plot.reg <- function(x, y, plot = TRUE, ...){
2 reg <- lm(y ~ x)
3 if(plot){ plot(x, y, ...)
4 abline(coef(reg))}
5 invisible(summary(reg))
6 }
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Note that I have added an argument, plot (Line 1), to control whether a plot is created via

if(plot) (Line 3). By suppressing plotting I get no graphics (or text) output:

with(Loblolly, plot.reg(age, height, plot = FALSE))

However, if I assign aname to the function’s output, andprint the assigned object, I get summary

output for the regression model:

lob.model <- with(Loblolly, plot.reg(age, height, plot = FALSE))
lob.model

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-7.021 -2.167 -0.439 2.054 6.855

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3124 0.6218 -2.11 0.038 *
x 2.5905 0.0409 63.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.95 on 82 degrees of freedom
Multiple R-squared: 0.98, Adjusted R-squared: 0.98
F-statistic: 4e+03 on 1 and 82 DF, p-value: <2e-16

�

8.4 Some Advanced Biometric Examples

R functions can be used to address complex mathematical/statistical problems associated

with biological research.

Example 8.11.

Biologists often need to solve systems of dependent differential equations inmodels describing

the propagation of electrochemical signals via action action potentials in neurons (Hodgkin

and Huxley, 1952), or models involving species interactions (e.g., competition or predation).

For instance, the Lotka-Volterra competition model has the form:
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𝑑𝑁1
𝑑𝑡

= 𝑟𝑚𝑎𝑥1𝑁1
𝐾1 −𝑁1 − 𝛼12𝑁2

𝐾1
𝑑𝑁2
𝑑𝑡

= 𝑟𝑚𝑎𝑥2𝑁2
𝐾2 −𝑁2 − 𝛼21𝑁1

𝐾2

(8.2)

where 𝑡 denotes time, 𝑟𝑚𝑎𝑥1 is the maximum per capita rate of increase (empirical rate) for

species 1, and 𝑟𝑚𝑎𝑥2 is the empirical rate for species 2,𝑁1 and𝑁2 are the number of individuals

from species 1 and 2, respectively,𝐾1 = the carrying capacity for species 1, i.e., the maximum

population size for that species,𝐾2 = the carrying capacity for species 2, 𝛼12 is the competitive

effect of species 2 on the growth of species 1, and 𝛼21 is the competitive effect of species 1 on

the growth rate of species 2.

We first bring in the package deSolve, which contains functions for solving ordinary differential

equations (ODEs).

library(deSolve)

We then define starting values for𝑁1 and𝑁2 and model parameters.

xstart <- c(N1 = 10, N2 = 10)
pars <- c(r1 = 0.5, r2 = 0.4, K1 = 400, K2 = 300, a2.1 = 0.4,

a1.2 = 1.1)

Next, we specify the Lotka-Volterra equations as a function. We will include the argument

time = time even though it is not explicitly used in the function. This is required by ODE

evaluators from deSolve.

1 LV <- function(time = time, xstart = xstart, pars = pars){
2 N1 <- xstart[1]
3 N2 <- xstart[2]
4 with(as.list(pars),{
5 dn1 <- r1 * N1 * ((K1 - N1 - (a1.2 * N2))/K1)
6 dn2 <- r2 * N2 * ((K2 - N2 - (a2.1 * N1))/K2)
7 res <- list(c(dn1, dn2))
8 })
9 }

The most complex part of the function occurs on Lines 4-8 where the system of ODEs in Eq

(8.2) is solved. Note the use of with() to make the components of the object pars accessible
between braces on Lines 4 and 8.

The deSolve::rk4() function solves simultaneous differential equations using classical

Runge-Kutta 4th order integration [Butcher (1987)][^08-ch8-13]. The arguments for rk4()



302 CHAPTER 8. FUNCTIONS

are, in order, the initial population numbers from species 1 and 2, the time frames to be

considered, the function to be evaluated, and the parameter values.

out <- as.data.frame(rk4(xstart, time = 1:200, LV, pars))

The object out contains the number of individuals in species 1 and 2 (𝑁1 and 𝑁2) for time

frames 1-200 (Fig 8.2).

plot(out$time, out$N2, xlab = "Time", ylab = "Number of individuals",
type = "l")

lines(out$time, out$N1, type = "l", col = "red", lty = 2)
legend("bottomright", lty = c(1, 2), legend = c("Species 2", "Species 1"),
col = c(1, 2))
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Figure 8.2: Solutions from Lotka Volterra ODEs for 𝑡 = {1, 2, ..., 200}. Species 1 and 2 coexist,

but at levels appreciably below their carrying capacities as a result of interspecific competition.

�

[^08-ch8-13]: The method of Euler (the simplest method to find approximate solutions to

first order equations) can be specified with the function deSolve::euler().
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Example 8.12.

Parameter estimation in biostatistics often requires optimization of mathematical functions

(finding function minima and maxima). A useful function for this application is uniroot(),
which searches an interval for the zero root of a function. For instance, many location estima-

tors (those which estimate “central” or “typical” values, e.g., estimators of the true underlying

mean) will be the zero root the function:

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇̂) (8.3)

where 𝑥𝑖 is the 𝑖th observation from a dataset, and 𝜇̂ is an estimator of a true location value.

We will use uniroot() to find a location estimate that provides a zero root for this function.

As data we will use tree heights from the dataframe loblolly.

data <- Loblolly$height
f <- function(x) sum(data - x)
uniroot(f, c(min(data), max(data)))$root

[1] 32.364

This value is identical to the sample mean of the tree heights.

mean(data)

[1] 32.364

Indeed, the sample mean will be always be the zero root of Eq. (8.3). Normally the differences

of the data points and the location estimate are squared, preceding summation. Minimizing

this function is the process of ordinary least squares.

�

8.5 Loops

Loop functions exist in some form in virtually all programming languages. A “for loop” in R is

initiated using the function for(). The for construct requires a specification of three entities

• An index variable, e.g., i,
• The statement in
• A sequence that the index variable refers to as the loop commences.

Code defining the loop follows, generally delineated by curly brackets. In parallel to function

writing it is good style to place the first curly bracket on the same line as the call to for, and to

place the last curly bracket on its own line. Thus, we have the basic for loop format:
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for(i in seq){
loop contents

}

In the loop, values of index are used directly or indirectly to specify the 𝑖th element of some-

thing (e.g., matrix column, vector entry, etc.) as the for loop sequence commences. The

replacement/definition process takes place in the “loop contents.” For instance,

for(i in 1:3){
print(i)

}

[1] 1
[1] 2
[1] 3

8.5.1 Extending Scalar Arguments

One application for a loop is to make functions with scalar input arguments amenable to

multi-element vector, matrix or dataframe inputs.

Example 8.13.

A library I created, plant.ecol, lives only on Github. We can access it with the code:

library(devtools)
install_github("moondog1969/plant.ecol")
library(plant.ecol)

The package devtools facilities building R packages from source code, and contains functions,

e.g., install_github(), for downloading packages from unconventional repositories5. The

function plant.ecol::radiation.heatl() calculates annual incident solar radiation (MJ

cm−2 yr−1) and heatload, a northern hemisphere thermal index that acknowledges that highest

levels of heat loading occur on southwest facing slopes north of the equator. The function

requires three arguments for some location of interest: slope, aspect, and north latitude, all

measured in degrees.

formals(radiation.heatl)

$slope

$aspect

5Functions from the tidyverse package usethiswill be useful for setting up passwords and tokens necessary

for downloading from some repositories, including Github.
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$lat

The function is designed to accommodate scalar inputs (single values for slope, aspect and lat).

We will create a for loop to allow calculation of multiple values from a matrix. For instance,

here are potential values for five sites.

envdata <- data.frame(slope = c(10, 12, 15, 20, 3),
aspect = c(148, 110, 0, 30, 130),
latitude = c(40, 50, 20, 25, 45))

We first create storage containers for the radiation and heatload results.

rad.out <- 1:nrow(envdata) -> hl.out

Here is a potential loop for our problem.

1 for(i in 1:length(rad.out)){
2 temp <- with(envdata, radiation.heatl(slope[i],
3 aspect[i],
4 latitude[i]))
5 rad.out[i] <- temp$radiation
6 hl.out[i] <- temp$heat.load
7 }

The function was forced to loop around on itself letting i = 1 during the first loop, i = 2,
during the second loop, up to i = 5 on the final loop. Here are the results.

cbind(rad.out, hl.out)

rad.out hl.out
[1,] 0.99766 0.94551
[2,] 0.85008 0.77345
[3,] 0.93030 0.96684
[4,] 0.85604 0.83957
[5,] 0.91852 0.90011

�

8.5.2 Building on a Previous Result

Another application of a loop is to iteratively build on the results of the previous step(s) in the

loop.

Example 8.14.

Consider the following function that counts the number of even entries in a vector of integers.
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1 evencount <- function(x){
2 res <- 0
3 for(i in 1 : length(x)){
4 if(x[i] %% 2 == 0) res <- res + 1
5 }
6 res
7 }

Recall from Ch 2 that %% is the modulus operator in R. That is, it finds the remainder in division.

By definition the remainder of any even integer divided by two will be zero. At each loop

iteration the function adds one to the numeric object res if the current integer in the loop is

even (if it has remainder zero if divided by two).

evencount(1:3)

[1] 1

evencount(c(1,2,3,4,10))

[1] 3

�

8.5.3 Summarizing Categorical Variables

A third loop application is the summarization of data with respect to levels in a categorical

variable.

Example 8.15.

As an example we will create statistical summaries for height and age for each Seed type in
the Loblolly dataset, using the stats function I created earlier. I first create an empty list to

hold my result:

result <- list()

1 for(i in levels(Loblolly$Seed)){
2 temp <- Loblolly[,1:2][Loblolly$Seed ==i,]
3 result[[i]] <- as.data.frame(apply(temp, 2, stats))
4 names(result[[i]]) <- c("Age","Height")
5 }

Loblolly$Seed. This is specified with: for(i in levels(Loblolly$Seed)). Note that on
Line 2, the first two columns of the Loblolly dataset are subset by levels in Seed. Here are
the results for seed type 305.
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result$'305' # "name" of one of the 14 Loblolly seed types

Age Height
n 6.0000 6.00000
min 4.7900 3.00000
max 64.1000 25.00000
mean 35.1150 13.00000
median 37.3050 12.50000
sd 23.9271 8.60233
var 572.5056 74.00000
IQR 36.8850 12.50000
SE 9.7682 3.51188
kurtosis -1.8479 -1.47809
skew -0.1613 0.25449

�

8.5.4 LoopingWithout for()

Looping in R is also possible using other general styles of Algol-like6 languages (e.g., C, C++,

Pascal, and Fortran). This is accomplished with the constructs while(), repeat, and break.

Example 8.16.

Consider an example in which 2 is added to a base number until the updated number becomes

greater than or equal to 10: We have:

i <- 1
while (i < 10) i <- i + 2
i

[1] 11

Or, to explicitly track the loop, we could use:

i <- 1; out <- i

while(TRUE){
j <- i + 2
out <- paste(out, j, sep = ",")
i <- j
if (i > 9) break

}

6Algol (Algorithmic language) computer languages arose in the late 1950s from the language ALGOL 68.

Important examples include Pascal, C, and Fortran.
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out

[1] "1,3,5,7,9,11"

Or, more simply

i <- 1; out <- i

repeat{
j <- i + 2
out <- paste(out, j, sep = ",")
i <- j
if (i > 9) break

}

out

[1] "1,3,5,7,9,11"

Here i took on values 1, 3, 5, 7, 9, and 11 as the loop commenced (this information is accumu-

lated in the object out). When i equaled 11, the condition for continuation of the loop failed

and the loop was halted.

�

Wickham (2019) recommends for loops over while() loops, and while() loops over repeat
procedures.

CAUTION!

Some care should be exercised with while() and repeat since infinite loops will result

if impossible breaks are specified.

8.5.5 Final Looping Considerations

Despite their potential usefulness, loops can run slowly in R, because it is an interpreted

language (see Ch 9). Loops can often be avoided altogether. For example, one could rewrite

the earlier evencount() function as:

evencounti <- function(x){
out <- ifelse(x %% 2 == 0, 1, 0)
sum(out)

}
# even outcomes from a random Poisson process
evencounti(rpois(1000, 2))
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[1] 503

This increases efficiency, as documented by the function system.time():

system.time(evencount(1:1000000))

user system elapsed
0.19 0.03 0.25

system.time(evencounti(1:1000000))

user system elapsed
0.07 0.00 0.07

Loops can often be run more efficiently using the apply() family of functions (see animation

examples using lapply() in Chs 6 and 7).

If loops are necessary, speed is an issue, and use of alternative approaches (e.g., lapply()) is
awkward or suboptimal, one can call a compiled C, C++, or Fortran script from within R to run

the loop. This topic is addressed further in Ch. 9.

8.6 Functional Programming

In functional programming one uses a declarative programming style that applies “pure”

(often argument-less) functions7. Binary or infix operations require exactly two operands, and

provide excellent examples of functional programming. The primitive functions `+`, `-`, `*`
(Section 8.1) are binary operator functions. When more than two operands are supplied, the

functions still work in pairs. Thus,

`+`(1,`+`(2,3))

[1] 6

is equivalent to

1 + 2 + 3

[1] 6

One can create personalized operator functions using the syntax: `% operator name %` or
"% operator name %".

Example 8.17.

It might be useful to have an operator-style function for computing cumulative sums of indi-

vidual numbers (although cumsum() does this already for numerical or complex objects). We

7Famous functional programming languages include Lisp, Scheme, F#, and Haskell.
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will call our new operator %+%.

`%+%` <- function(a,b){c(a, a + cumsum(b))}

2.1 %+% 7.4

[1] 2.1 9.5

To make the operator work for more than two numbers, the second operand must be a multi-

element numeric object.

2.1 %+% c(2.6, 1.5, 6)

[1] 2.1 4.7 6.2 12.2

�

Useful R functions for functional programming include Reduce(), Filter(), Find(), Map(),
Negate(), and Position().

Example 8.18.

As a more applied example, recall from Section 4.2.8 that the %in% operator can be used to

indicate if there is a match (or not) for its left operand. This does not clarify, however, how one

might specify not %in%. The operations !%in% and %!in%, for example, do not work. The code

below creates a %!in% operator using the function Negate().

`%!in%` <- Negate(`%in%`)

We apply `%!in%` below to subset bacterial phylum names.

big <- c("Abawacabacteria", "Absconditabacteria", "Acidobacteriota",
"Actinomycetota", "Aminicenantes", "Atribacterota",
"Aquificota", "Azambacteria")

small <- c("Acidobacteriota", "Actinomycetota")

w <- which(big %!in% small)
big[w]

[1] "Abawacabacteria" "Absconditabacteria" "Aminicenantes"
[4] "Atribacterota" "Aquificota" "Azambacteria"

�
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8.7 Functions with Classes and Methods

R object classes can have particularmethods for plotting, printing, and summarization. Fol-

lowing a relatively simple series of steps, these methods can be implemented using generic

function names, i.e., plot(), print(), summary(). For example, the function lm() creates

objects of class lm.

model <- lm(height ~ age, data = Loblolly)
class(model)

[1] "lm"

There are specific summary, print, and plot methods for an object of class lm. Code for

these methods can be viewed by typing stats:::summary.lm, stats:::print.lm, and
stats:::plot.lm, respectively. The stats:::print.lmwill be called automatically to print

an object of class lm. For instance,

print(model)

Call:
lm(formula = height ~ age, data = Loblolly)

Coefficients:
(Intercept) age

-1.31 2.59

or, more simply,

model

Call:
lm(formula = height ~ age, data = Loblolly)

Coefficients:
(Intercept) age

-1.31 2.59

Here are 20 out of the more than 500 functions on my workstation that can be called with

print(), depending on the class of the object that is being printed.

methods(print)[1:20]

[1] "print,ANY-method" "print,diagonalMatrix-method"
[3] "print,modelMatrix-method" "print,sparseMatrix-method"
[5] "print.aareg" "print.abbrev"
[7] "print.abuocc" "print.acf"
[9] "print.activeConcordance" "print.addtest"
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[11] "print.AES" "print.agnes"
[13] "print.all_vars" "print.allPerms"
[15] "print.anosim" "print.anova"
[17] "print.Anova" "print.anova.gam"
[19] "print.anova.lme" "print.anova.loglm"

Importantly, we are not limited to the pre-existing object classes inR (e.g., lm, numeric, factor,
etc.). Instead, we can create user-defined classes for function output. These classes can also

have methods for plotting, printing, and summarization.

8.7.1 S3 and S4

R has two-main approaches for developing OOP classes: S3, and S4 8 Wickham (2019) notes:

“S3 allows your functions to return rich results with user-friendly display and

programmer-friendly internals”

and

“S4 is a rigorous system that forces you to think carefully about program design. It’s

particularly well-suited for building large systems that evolve over time and will

receive contributions from many programmers.”

S3 methods tend to be easier to develop than S4 methods, and this approach is recommended

for most applications in R. The amenability of S4 for interfacing with multiple programmers

explainswhy this approach is required for contribution to thehighly collaborativeBioconductor

project. S4 OOP classes and their associated methods are implemented via the R-distribution

packagemethods. I focus on S3 methods here, but briefly consider S4 methods.

8.7.1.1 S3

S3 classes are created using the function class().

ISU <- list(name = "Idaho State University", n.students = 12000,
founded = 1905)

class(ISU) <- "univ"
ISU

$name
[1] "Idaho State University"

$n.students
[1] 12000

$founded
8S1 andS2OOPclasses donot exist. S3 and S4werenamedaccording to the versions of S that they accompanied.

S versions 1 and 2 didn’t have an OOP framework.
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[1] 1905

attr(,"class")
[1] "univ"

Note that the object ISU has the class attribute "univ". The sloop package contains functions
to help distinguish OOP class frameworks. The function sloop::otype() can be used to

determine if an object is S3, S4, RC, or R6.

library(sloop)
otype(ISU)

[1] "S3"

The object ISU is S3.

An S3 (or S4 object) is fairly useless without associatedmethods. Here is a simple print method

for an object of class univ, i.e., a list with components: name, founded, and n.students.

print.univ <- function(x){
cat(x$name, " was founded in ", x$founded, ",\nand has an enrollment of ",

x$n.students, " students.", sep = "")
}

This dramatically changes the way the object ISU is printed.

ISU

Idaho State University was founded in 1905,
and has an enrollment of 12000 students.

Functions useful in creating print methods include cat() (used above) and structure(). The
function cat() concatenates text into a single character vector, and prints the results. As a

simple example, in the code below we bind the string “iteration = '', to a random integer

generated from a Poisson distribution rpois(1, 10), and apply a double line break "\n\n".

cat("iteration = ", rpois(1, 10), "\n\n", sep = "")

iteration = 6

The function structure() allows one to assign an attribute set to data.

structure(.Data = 1:6, dim = 2:3)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
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structure(.Data = 1:6, names = LETTERS[1:6])

A B C D E F
1 2 3 4 5 6

We can identify methods specific to some class using the function sloop::ftype.

ftype(print.univ)

[1] "S3" "method"

Thus, print.univ is a method function. It provides customized printing for objects of class

univ.

Example 8.19.

Here is a more complex example in which an output object from a function has an S3 class. The

function asbio::pairw.anova is used for adjusting 𝑝-values resulting frommultiple pairwise

comparisons following an omnibus ANOVA (ANalysis Of VAriance). Objects generated by the

function have class pairw and are S3.

eggs <- c(11,17,16,14,15,12,10,15,19,11,23,20,18,17,27,33,22,26,28)
trt <- factor(rep(1:4, c(5,5,4,5)))

library(asbio)
tukey <- pairw.anova(y = eggs, x = trt)
class(tukey)

[1] "pairw"

otype(tukey)

[1] "S3"

Objects of class pairw have both print and plot methods.

ftype(print.pairw) # print method for class pairw

[1] "S3" "method"

ftype(plot.pairw) # plot method for class pairw

[1] "S3" "method"

Here is the actual print()method’s output:

tukey

95% Tukey-Kramer confidence intervals
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Diff Lower Upper Decision Adj. p-value
mu1-mu2 1.2 -4.71976 7.11976 FTR H0 0.935298
mu1-mu3 -4.9 -11.17885 1.37885 FTR H0 0.15489
mu2-mu3 -6.1 -12.37885 0.17885 FTR H0 0.058287
mu1-mu4 -12.6 -18.51976 -6.68024 Reject H0 0.000101
mu2-mu4 -13.8 -19.71976 -7.88024 Reject H0 3.7e-05
mu3-mu4 -7.7 -13.97885 -1.42115 Reject H0 0.014218

This same method is used for other objects from asbiowhose output has class pairw. These
include objects from functions providing pairwise comparisons of factor levels following an

omnibus Friedman’s test9, pairw.fried(), and an omnibus Welch’s test10, pairw.oneway().

welch <- pairw.oneway(y = eggs, x = trt)
welch

95% Welch adjusted confidence intervals

Diff Lower Upper Decision Adj. p-value
mu1-mu2 1.2 -3.39503 5.79503 FTR H0 0.55425
mu1-mu3 -4.9 -8.991 -0.809 FTR H0 0.068803
mu2-mu3 -6.1 -11.06986 -1.13014 FTR H0 0.068803
mu1-mu4 -12.6 -17.53547 -7.66453 Reject H0 0.0032699
mu2-mu4 -13.8 -19.36022 -8.23978 Reject H0 0.0027003
mu3-mu4 -7.7 -12.95069 -2.44931 Reject H0 0.04229

�

One can often identify amethod function by the presence of a period character, ., in the function
name. For instance, asbio::plot.pairw() is a plotting method for objects of class pairw.
Unfortunately, this is not always true. For example, my function asbio::parw.anova() is not
a methods function, although the function itself has two methods: asbio::plot.pairw(),
asbio::print.pairw() (Example 8.19).

Viewing underlying code for S3 methods functions may require use of the double colon :: or

triple colon operator :::, even if the namespace of the method function is loaded.

Example 8.20.

For instance functions from the utils package are loaded automatically upon opening R. How-

ever, the utils function Bibtex, used for converting character vectors to BibTeX or LaTeX

markup, requires requires ::: for code depiction.

utils::print.Bibtex

Error: 'print.Bibtex' is not an exported object from 'namespace:utils'

9Friedman’s test is a non-parametric alternative to an ANOVA with a blocking variable.
10Welch’s test, implementedusingoneway.test, allowsheteroscedasticity among factor levelswhen comparing

factor level means.
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utils:::print.Bibtex

function (x, prefix = "", ...)
{

writeLines(paste0(prefix, unclass(x)), ...)
invisible(x)

}
<bytecode: 0x0000012db9eb4468>
<environment: namespace:utils>

�

The reason for this “secrecy” is that internal methods are likely to be specific to classes associ-

ated with particular packages, and are unlikely to be useful outside of that context.

Example 8.21.

In this extended exercise we will fashion an advanced function, with an S3 class and create

associated methods, using a number of approaches discussed so far in this chapter.

In ecological studies, 𝛼-diversity measures the level of species evenness and richness within

individual plots in a dataset. The most widely used alpha diversity indices are Simpson’s index,

𝐷1, and the Shannon-Wiener index,𝐻′.

𝐷1 = 1 −
𝑆
∑
𝑖=1

𝑝2𝑖 (8.4)

𝐻′ = −
𝑆
∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖 (8.5)

where 𝑆 denotes the number of species, and 𝑝𝑖 is the proportional abundance of the 𝑖th species,
𝑖 = 1, 2,… , 𝑆.

Here are features I want my advanced 𝛼-diversity function to have:

• Arguments specifying (1) a dataset for analysis, and (2) the type of 𝛼-diversity we want

calculated. So, two arguments.

• A function capable of handing summaries of communities for a single site, whose data

will be a single numeric vector, and dataframes describing abundances of taxa atmultiple

sites.

• Assignment of correct names of sites (if any) to results.

• Partial matching of diversity method names using arg.match.
• An S3 class.

• Invisible components, appropriate for class print and plot methods.

1 alpha.div <- function(x, method = "simpson"){
2 if(is.data.frame(x)) rn <- rownames(x) else {
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3 if(ncol(as.matrix(x) == 1)) rn = noquote("") else
4 rn = 1:nrow(as.matrix(x))
5 }
6

7 indices <- c("simpson", "shannon"); method <- match.arg(method, indices)
8

9 x <- as.matrix(x)
10

11 prop <- function(x){
12 if(ncol(x) == 1) out <- x/sum(x)
13 else
14 out <- apply(x, 1, function(x) x/sum(x))
15 out
16 }
17

18 p.i <- prop(x)
19

20 simp <- function(x, p.i){
21 if(ncol(x) == 1) D <- 1 - sum(p.i^2)
22 else
23 D <- 1 - apply(p.i^2, 2, sum)
24 D
25 }
26

27 shan <- function(x, p.i){
28 if(ncol(x) == 1) H <- -sum(p.i[p.i > 0] * log(p.i[p.i > 0]))
29 else
30 H <- apply(p.i, 2, function(x)-sum(x[x != 0] * log(x[x != 0])))
31 H
32 }
33

34 div <- switch(method,
35 simpson = simp(x, p.i),
36 shannon = shan(x, p.i))
37

38 out <- list(p.i = p.i, rn = rn, method = method, div = div)
39 class(out) <- "a_div"; invisible(out)
40 }

Below is a breakdown of important components of the function alpha.div() above.

• In the arguments (Line 1), x is assumed to be either 1) a dataframe of taxa abundances at

sites, with sites in rows (identified by row names) and taxa in columns, or 2) a numeric

vector containing abundances of distinct taxa at a single site.

• In the first lines of code in the function body (Lines 2-4), the function attempts to obtain
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site names from x. If x is a dataframe, this is done using rn <- rownames(x). If x is

a vector describing a single site, distinguishing site names is probably not important,

hence the code rn = noquote("").
• The alpha.div() function contains three sub-functions: prop() (Lines 11-16), which

allows computation of 𝑝𝑖, and is used to create the object p.i, simp() (Lines 20-25),

which calculates Simpson’s diversities, and shan() (Lines 27-32), which calculates

Shannon-Weiner diversities. The latter function contains exception handling steps for

taxa abundances of zero which will be undefined in Eq (8.5). For instance, p.i[p.i >
0] on Line 28, and x[x != 0] on Line 30.

• Partial matching of diversity method names (i.e., "simpson" and "shannon") is facili-
tated through the function match.arg().

• Switching of diversity methods is done via switch() (Lines 34-36).
• The function output is a list named out, which contain four objects: the proportional

abundances of taxa, the rownames of x (i.e, the site names), the diversity method used,

and the actual calculated diversities (Line 38).

• In the last line of body code, out is assigned to the user-defined class a_div and made

invisible.

Here we apply the function to the dataset varespec from the library vegan.

library(vegan)
data(varespec)
v.div <- alpha.div(varespec)
class(v.div)

[1] "a_div"

otype(v.div)

[1] "S3"

Printing the output object v.div results in a rather messy rendering of a list, prompting the

creation of an a_div print method. Our print.a_div() functionwill succinctly and effectively

summarize results from alpha.divwhile allowing access to additional (invisible) information.

Our function for printing can be relatively simple.

1 print.a_div <- function(x, digits = 5){
2 method <- ifelse(x$method == "simpson", "Simpson",
3 "Shannon-Weiner")
4 cat(method, " diversity:", "\n", sep = "")
5 rq <- structure(x$div, names = x$rn)
6 print(rq, digits = digits)
7 invisible(x)
8 }

• The required argument, x in print.a_div (Line 1), will be an object of class a_div,
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created by the function alpha.div(), e.g., the object v.div. Recall that this is a list

containing multiple objects.

• The object x$method is used create a tidy text summary of the diversity method used

(Lines 2-3). This string is combined with a another string and printed with a line break

in: cat(method, " diversity:", "\n", sep = "") (Line 4).
• The actual diversities are printed with the help of the function structure() on Lines

5-6.

print(v.div)

Simpson diversity:
18 15 24 27 23 19 22 16 28

0.82171 0.76276 0.78101 0.74414 0.84108 0.81819 0.80310 0.82477 0.55996
13 14 20 25 7 5 6 3 4

0.81828 0.82994 0.84615 0.83991 0.70115 0.56149 0.73888 0.64181 0.78261
2 9 12 10 11 21

0.55011 0.49614 0.67568 0.50261 0.80463 0.85896

Output from alpha.div() can also be used for plotting. Here is a plot function for objects of

class a_div.

1 plot.a_div <- function(x, plot.RAC = FALSE){
2 require(ggplot2)
3 margin_theme <- function(){
4 theme(axis.title.x = element_text(vjust=-5),
5 axis.title.y = element_text(vjust=5),
6 plot.margin = margin(t = 7.5, r = 7.5,
7 b = 20, l = 15))
8 }
9

10 ptype1 <- function(){
11 spi <- apply(x$p.i, 2, function(x)sort(x, decreasing = TRUE))
12 sspi <- data.frame(p.i = stack(as.data.frame(spi))[,1])
13 sspi$Rank <- rep(1:nrow(x$p.i), ncol(x$p.i))
14 sspi$Site <- rep(x$rn, each = nrow(x$p.i))
15 ggplot(sspi, aes(y = p.i, x = Rank, group = Site)) +
16 geom_line(aes(y = p.i, x = Rank, colour = Site), alpha = .4) +
17 ylab(expression(italic(p[i]))) +
18 theme_classic() + margin_theme()
19 }
20

21 ptype2 <- function(){
22 diversity <- data.frame(div = x$div, Site = factor(x$rn))
23 method <- ifelse(x$method == "simpson", "Simpson diveristy",
24 "Shannon-Weiner diveristy")
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25 ggplot(diversity) +
26 geom_bar(aes(y = div, x = Site, fill = div), show.legend = FALSE,
27 stat = "identity") +
28 theme_classic() +
29 margin_theme() +
30 ylab(method) + xlab("Site")
31 }
32 if(plot.RAC) ptype1() else ptype2()
33 }

• The plot method allows the creation of two distinct types of ggplots by calling distinct

sub-functions, ptype1() and ptype2() via the argument plot.RAC (Line one).
• Barplots of site diversities are produced by using the default plot.RAC = FALSEwhich

will run the function ptype2() on Lines 21-31 (Fig 8.3)

• Rank abundance curves (RACs) are created by specifying plot.RAC = TRUEwhich runs

the function ptype1() on Lines 10-19 (Fig 8.4). RAC plots allow graphical expressions

of both taxa richness and evenness, and may even provide insights regarding resource

exploitation in community (Magurran, 1988).

plot(v.div)
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Figure 8.3: Barplot of site diversities from the vegan::varespec data. Note that bar colors
are varied using the diversities themselves, i.e., fill = div.

plot(v.div, plot.RAC = TRUE)
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Figure 8.4: Rank abundance curves of the vegan::varespec dataset. Line lengths indicate
species richness. Larger negative slopes indicate less species evenness.

�

8.7.1.2 S4

An S4 class is defined using the function setClass(). Unlike S3 objects and classes, S4 class

components, i.e., slots, must be defined in setClass(), along with the sub-classes of those

components. Here I create an S4 class called univ for comparison to the S3 class univ created
in the previous section.

setClass("univ", slots = list(name = "character", n.students = "numeric",
founded = "numeric"))

The S4 class univwill have three slots: name, n.students, and founded. S4 objects are created
using the new() function.
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ISU <- new(Class = "univ", name = "Idaho State University",
n.students = 12000, founded = 1905)

The object ISU has the S4 class univ.

class(ISU)

[1] "univ"
attr(,"package")
[1] ".GlobalEnv"

typeof(ISU)

[1] "S4"

otype(ISU)

[1] "S4"

Here is the structure of the object:

str(ISU)

Formal class 'univ' [package ".GlobalEnv"] with 3 slots
..@ name : chr "Idaho State University"
..@ n.students: num 12000
..@ founded : num 1905

Just as components of a list are accessed using $, the slots of an S4 object are accessed using @.

ISU@founded

[1] 1905

Or with the function slot().

slot(ISU, "founded")

[1] 1905

We set S4 methods using the function setMethod(). Here is an S4 show()method (analogous

to S3 print()) for objects of class univ.

setMethod("show",
"univ",
function(object) {
cat(object@name, "was founded in", object@founded,

"and has an enrollment of",
object@n.students, "students.", sep = " ")
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}
)

ISU

Idaho State University was founded in 1905 and has an enrollment of 12000 students.

Example 8.22.

As a real-world S4 example, the function stats4::mle() estimates parameters for probability

density functions using the method of maximum likelihood. Below we estimate the rate

parameter for a Poisson distribution, 𝜆, based on a sample of count data.

# count data
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

# MLE for lambda in a Poisson distribution given data in y
nLL <- function(lambda) - sum(dpois(y, lambda, log = T))
# mle finds negative log-likelihoods
fit0 <- stats4::mle(nLL, start = list(lambda = 5),

nobs = length(y))

The MLE for the Poisson rate parameter, from data outcomes in y, is approximately 11.545.

Notably, this is equal to the sample mean of y.

fit0

Call:
stats4::mle(minuslogl = nLL, start = list(lambda = 5), nobs = length(y))

Coefficients:
lambda
11.545

mean(y)

[1] 11.545

The class of fit0 is mle. The class has an S4 designation.

class(fit0)

[1] "mle"
attr(,"package")
[1] "stats4"
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otype(fit0)

[1] "S4"

The slot structure of an object from class mle is complex:

str(fit0)

Formal class 'mle' [package "stats4"] with 10 slots
..@ call : language stats4::mle(minuslogl = nLL, start = list(lambda = 5), nobs = length(y))
..@ coef : Named num 11.5
.. ..- attr(*, "names")= chr "lambda"
..@ fullcoef : Named num 11.5
.. ..- attr(*, "names")= chr "lambda"
..@ fixed : Named num NA
.. ..- attr(*, "names")= chr "lambda"
..@ vcov : num [1, 1] 1.05
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr "lambda"
.. .. ..$ : chr "lambda"
..@ min : num 42.7
..@ details :List of 6
.. ..$ par : Named num 11.5
.. .. ..- attr(*, "names")= chr "lambda"
.. ..$ value : num 42.7
.. ..$ counts : Named int [1:2] 14 8
.. .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
.. ..$ convergence: int 0
.. ..$ message : NULL
.. ..$ hessian : num [1, 1] 0.953
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr "lambda"
.. .. .. ..$ : chr "lambda"
..@ minuslogl:function (lambda)
..@ nobs : int 11
..@ method : chr "BFGS"

�

8.7.2 RC, R6 and others

Aside from S3 and S4, Wickham (2019) discusses several other less widely-used OOP ap-

proaches including: R.oo (Bengtsson, 2003), proto (Grothendieck et al., 2016), and particularly,

R6 (Chang, 2025) and RC (for Reference Classes). RC is underlain by S4, and thus requires the

methods package. R6, R.oo, and proto require the R6, R.oo, and proto contributed packages,

respectively.

Under RC and R6 syntax, generics (e.g., plot() or print()) are not used. Instead, methods

reflect a member function grammar as implemented in Java, C++ (see Section 9.3.1.2), and

Python (Section 9.5.6). For an RC or R6 object foo, the associated method bar would be

applied using the syntax: foo$bar(). Additionally, RC and R6 methods allowmethod chaining,

thus facilitating pipe operations common to the tidyverse (Ch 5). RC Reference Classes are

generated using base::setRefClass(). R6 object classes and methods require the function

R6::R6Class().

R6 methods are not S4, and do not use copy-on-modify semantics, making them useful for
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handling model objects that exist independently of R (Wickham, 2019). Reflecting Java and

C++ syntax, R6 allows the creation of private fields that can only be accessed from within the

class.

8.8 How Functions Work: Environments, Promises, and

Function Evaluation

Understanding the process of function evaluation is an important step in acquiring a deeper

understanding of R because– as noted in the Introduction to this chapter: “Everything that

happens in R is a function call.” To clarify function evaluation, however, a number of other

processes require some introduction. These include environmental search paths that allow

to R to correctly identify and utilize functions and other objects, and programmatic promises

with lazy evaluation that reduce memory usage.

8.8.1 Environments

An R environment is a specialized storage container consisting of: 1) a collection of named

objects, and 2) a pointer to another enclosing environment. We have already learned that:

1) All R objects, including functions, require an environment (Section 8.1.2), 2) an R session

(and objects created in that session) are located in the global environment, R_GlobalEnv, 3)
only objects in the current environment (Section 8.8.1.1.1) will be accessible by name (Section

2.3.3), and 4) objects created within a function are local to an enclosing function environment,

unless defined by the super assignment operator (Section 8.2). An R environment is very

similar to a list, with three important exceptions (Wickham, 2019):

• First, the name of every object in the environment must be unique. This is not true for a

list:

demolist <- list("a" = 1, "a" = 2)
names(demolist)

[1] "a" "a"

although it is true for a dataframe.

demodf <- data.frame("a" = 1, "a" = 2)
names(demodf)

[1] "a" "a.1"

• Second, despite that fact that numerical referencing is available for all basic R data

storage types…
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demolist[[2]]

[1] 2

the names of objects in an environment are not ordered, and thus, they are not accessible

with numeric identifiers.

• Third (essentially), every environment will have an enclosing “parent” environment.

The package rlang contains several useful functions for creating and exploring environments.

For example, the function rlang::env() can be used to create a new environment (within

the current environment).

Example 8.23.

Here I create an environment, e1, and insert some objects containing snippets of bioinformatics

data.

library(rlang)
e1 <- env(DNA = c("ACA","CGA"),

RNA = c("UGU, GAU"),
a.acid = c("Cys", "Tyr"))

The function rlang::env_print() shows that e1 has three character vector bindings.

env_print(e1)

<environment: 0x0000012dcdaab118>
Parent: <environment: global>
Bindings:
* RNA: <chr>
* a.acid: <chr>
* DNA: <chr>

The cipher following <environment: is the object address for e1, a pointer to the location of

e1 in primary memory (Section 3.5).

One can access objects in an environment by name, using the $ operator or square braces, [].

e1$DNA

[1] "ACA" "CGA"

e1[["DNA"]]

[1] "ACA" "CGA"

but not by number.
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e1[[1]]

Error in e1[[1]]: wrong arguments for subsetting an environment

�

8.8.1.1 Special Environments

This section considers several special (and extremely important) R environments.

8.8.1.1.1 The Current, Execution, Function, and Empty Environment The current envi-

ronment defines the environment of the code that is currently being run.

Example 8.24.

The current environment can be identified with the function rlang::current_env(). Clearly,
the current environment will often be the global environment.

current_env()

<environment: R_GlobalEnv>

The function environment will be the environment in which the function is created.

f <- function(){x <- current_env(); x}
environment(f)

<environment: R_GlobalEnv>

However, the (internal) environment of the function itself will always bind a local environment

when called. For example,

f()

<environment: 0x0000012dc8c14270>

In this case, the current environment is also the execution environment of the function f(). The
execution environment of a function will always be a child of the function environment, and will

generally be ephemeral. That is, once the function has run and created any necessary internal

variables, the execution environment (and the variables in that environment) will be garbage

collected and disposed of.

As a demonstration, note that the execution environment of f() is assigned to a different

address every time it is run.

f(); f()

<environment: 0x0000012dc74b5b98>
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<environment: 0x0000012dc3f46d20>

�

(Essentially) all environments in R have an enclosing parent environment, resulting in a hier-

archical framework that facilitates lexical scoping and the generation of appropriate search

paths.

Example 8.25.

Here is the the parent environment of the function asbio::pairw.anova() introduced in

Example 8.19.

epw <- environment(pairw.anova)
epw

<environment: namespace:asbio>

The immediate parent environment for pairw.anova() is the so-called namespace environ-

ment (see Section 8.8.1.1.2 of the package asbio. One can dive deeper into the ancestry of

parental environments using rlang::env_parents(). Here are the parents for the environ-
ment namespace:asbio.

env_parents(epw)

[[1]] $ <env: imports:asbio>
[[2]] $ <env: namespace:base>
[[3]] $ <env: global>

The output reveals that: 1) the immediate parent of namespace:asbio (the parent of

pairw.anova()) is the imports environment (see Section 8.8.1.1.2) from the package asbio, 2)

the base package namespace environment is required to identify asbio parents, and 3) asbio

and its functions (and all other loaded packages and their functions) are contained in the

global environment.

�

The one environment in R that doesn’t have a parent environment is the so-called empty

environment, R_EmptyEnv.

empty_env()

<environment: R_EmptyEnv>

If one specifies last = empty_env() in env_parents(), then all parent environmentswill be

shown for a particular environment of interest. Thiswill include the global environment, and all

loaded package environments. In this process, the last loaded packagewill be designated as the

parent of the global environment, and so on. This process defines a search path, because all of
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the exported components of all the loaded packages can be called from the global environment

(Fig 8.5).

Figure 8.5: Increasing ancestry of environments from left to right, begining with gloabal

environment. Package b is the the most recently loaded package.

Example 8.26.

Consider the following example:

eps <- env_parents(epw, last = empty_env())

Here are the first eight (of 62) enclosing environments for the asbio namespace environment,

which itself is the parent environment to the function asbio::pairw.anova() (Example 8.25).

eps[1:8]

[[1]] $ <env: imports:asbio>
[[2]] $ <env: namespace:base>
[[3]] $ <env: global>
[[4]] $ <env: package:sloop>
[[5]] $ <env: package:plant.ecol>
[[6]] $ <env: package:devtools>
[[7]] $ <env: package:usethis>
[[8]] $ <env: package:deSolve>

Identification of the R object search path using base::search(), is essentially identical to the
enclosing parent environment list.

Notably, in any list of environmental ancestors, the last three environments will always be the

same. They will be: Autoloads→ the base package→ R_EmptyEnv (cf. Fig 8.5).

tail(eps, 3)

[[1]] $ <env: Autoloads>
[[2]] $ <env: package:base>
[[3]] $ <env: empty>

Autoloads creates a promise (Section 8.8.2) to potentially load packages and their functions

without actually using memory to complete this task. The base package contains the basic
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functions that allow R to function as a language, and R_EmptyEnv underlies all environments.

�

8.8.1.1.2 The Package, Namespace, and Imports Environments Every package has

three fundamental environments. The package environment, the namespace environment and

the imports environment. The package environment controls how functions and procedures

are found by a user (for instance, using the :: operator). The namespace environment serves

as an internal interface for a package. It controls how a packaged function finds its required

variables (Wickham, 2019). The imports environment will be the immediate parent to the

namespace environment, and defines functions or other objects from other packages that are

required for the importing package to work properly (Gupta, 2012). The requirements of an

imports environment can be listed with the utils function packageDescription().

Example 8.27.

Here are the current packages imported by the package asbio:

packageDescription("asbio", fields = "Imports")

scatterplot3d, pixmap, plotrix, mvtnorm, deSolve, lattice,
multcompView, grDevices, graphics, stats, utils, gWidgets2,
gWidgets2tcltk

�

Package developers can also define a Depends field in their packages. These dependencies are

not limited to packages. For example, specific versions of Rmay be required for a package.

Packages in a Depends field differ from those defined in an imports environment primarily

by where they will be located in a search path. If a package is specified in Depends then

the package is loaded using an analogous approach to library() or require(). This makes

packages in Depends, an enclosing environment for the global environment (Example 8.26).

As a result, Depends can make a package exposed and vulnerable to other loaded packages

(Gupta, 2012). A package Depends field can also be listed with packageDescription().

Example 8.28.

Here is the Depends field for asbio:

packageDescription("asbio", fields = "Depends")

[1] "R (>= 3.5.0), tcltk"

We see that asbio currently requires the GUI-generating package tcltk (Ch 11), and versions of

R as or more recent than version 3.5.0.

�
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Clearly, defining an imports environment and the Depends field are important components of

R package development (see Ch 10).

Every binding for every function in the package environment also occurs in the namespace

environment. This ensures that every function in a package will be able to call every other

function in that package. The namespace environment, however, is potentially more inclusive.

This is because it can contain entities that do not occur in the package environment. These

internal objects or non-exported objects allow package maintainers to “hide” some processes

from users. Frequently hidden objects include methods for package-specific classes that are

unlikely to be useful outside of the scope of that package. This format is analogous to a private

or internal class or method used by many languages, including Java, C++, and Python.

Parent environments may change if a new package is loaded (Example 8.26). In this case,

functions with the same name may be “masked” in more ancestral environments, prompting a

warning from R. The potential serious consequences of this outcome, however, are generally

overcome by the R search path framework which relies heavily on the package, namespace

and imports environments.

Example 8.29.

As a simple example, the primary purpose of asbio::pairw.anova() is to call other asbio func-
tions for controlling familywise type I error in a family of pairwise tests, following (potentially)

application of an omnibus ANOVA test.

• These functions include: asbio::lsdCI(), asbio::scheffeCI(), asbio::dunnettCI(),
and asbio::tukeyCI().

• Further, those asbio functions rely on other external algorithms, including: 1) functions

from the base package (which does not require explicit importing), including sum(),
tapply(), seq(), outer(), paste(), and sqrt(), and 2) the function anova() from the

stats package (which does require importing (Example 8.27)).

Thehierarchyof thesedependencies promptpotential concerns aboutasbio::pairw.anova()
failing if another package is loaded, whose functions have one or more of the asbio function

names, or the names of required underlying functions from external packages.

Fig 8.6 shows the environmental framework of asbio::pairw.anova(), based on Examples

8.25 and 8.26. Note that we have the general search path: namespace: asbio→ imports:
asbio→ namespace: base→ R_GlobalEnv→. The function’s immediate parent environ-

ment isnamespace: asbio. Further, theparent environment of severalasbio functions implicit

to pairw.anova(), including lsdCI() have the namespace: asbio enclosing environment.

The function anova(), required by lsdCI(), is in the stats package, which is accessed from

the imports: asbio environment. Several other functions required by lsdCI() are in the

base package including sum(), tapply(), paste(). These are readily accessible because the
namespace: base environment will be located just after the imports environment of all pack-

ages in all search paths.
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Figure 8.6: The environmental framework of asbio::pairw().

�

8.8.1.1.3 The Caller Environment A final special environment is the caller environment.

It refers the environment from which a function is called. This concept is important when

following call stack. That is, the sequence of operations in a function or process that potentially

calls multiple functions. A flawed call stack may result in R shut down errors, with potential

memory faults.

Example 8.30.

Recall that the function environment is the environment where the function was created. For

instance, in Example 8.24 we had:

f <- function(){current_env()}
environment(f)

<environment: R_GlobalEnv>

However, the execution environment of a function is ephemeral, and will be replaced with each

function call.
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f()

<environment: 0x0000012dbc72f0e0>

f()

<environment: 0x0000012dbc676498>

Here is a series of nested functions.

e <- function(show.local = TRUE){
L <- list(caller_env(), current_env(), f())
names(L) <- c("Function Env for e", "Execution Env for e", "Envs in e")
if(show.local) L

}

f <- function(){
L <- list(caller_env(), current_env(), g())
names(L) <- c("Function Env for f", "Execution Env for f",

"Env for g (in f)")
L

}

g <- function(){
caller_env()

}

e()

$`Function Env for e`
<environment: R_GlobalEnv>

$`Execution Env for e`
<environment: 0x0000012db9c45660>

$`Envs in e`
$`Envs in e`$`Function Env for f`
<environment: 0x0000012db9c45660>

$`Envs in e`$`Execution Env for f`
<environment: 0x0000012db9c45af8>

$`Envs in e`$`Env for g (in f)`
<environment: 0x0000012db9c45af8>

Three distinct environments are listed in the output. We begin by calling e(), whose caller

environment is GlobalEnv_R. Because f() is called by e(), the caller environment for f() is
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also the execution environment for e(), and, because g() is called by f(), the caller environment

for g() is also the execution environment for f().

The function lobstr::cst() depicts a call stack sequence as a tree.

e <- function() f()
f <- function() g()
g <- function() lobstr::cst()
e()

x
1. \-global e()
2. \-global f()
3. \-global g()
4. \-lobstr::cst()

For the example above, e() calls f(), and f() calls g(). The function environment of e(), f(),
and g() is GlobalEnv_R, although g() calls cst() in lobstr.

�

8.8.2 Lazy Evaluation and Promises

Under lazy evaluation, objects are evaluated only when those objects are actually needed.

Arguments in most R functions allow lazy evaluation. For instance, the function below works,

even though a value for the argument z is not supplied. This is because the arguments are

merely promises, pending their actual call in the body of the function.

Example 8.31.

For example

xy <- function(x, y, z){
x + y

}

xy(3, 4)

[1] 7

One could expressly include values for z (or not) in a function that calls z, by adding

a conditional statement dependent on its promise status. For instance, using the call

pryr::is_promise(z).

xyz <- function(x, y, z){
out <- x + y
if(pryr::is_promise(z)) out <- out + z
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out
}

xyz(4, 3)

[1] 7

xyz(4, 3, 2)

[1] 9

A more common solution is to supply argument defaults like NA or NULL, and use the con-

ventional Boolean functions is.na(), and is.null() to determine whether those promises

should be evaluated.

�

The function substitute() allows one to substitute promises (function arguments) bound to

an environment. The function quote(), on the other hand, returns the evaluable function ar-

gument(s). Wickham (2019) refers to this programmatic approach as non-standard evaluation.

Example 8.32.

For example, assume that we wish to do pairwise comparison of true means, controlling FWER

using Tukey’s method. Assume further that we have several independent experiments that

use the same factor level framework.

x <- factor(rep(c(1,2,3), each = 5))
exp1 <- rnorm(15) # random sample from N(0, 1)
exp2 <- rpois(15, 1) # random sample from POI(1)
exp3 <- rexp(15, 1) # random sample from EXP(1)

# here is quoted version of the call
my_call <- substitute(pairw.anova(y = exp1, x))
# here are names, including (modifiable) promises
eval(my_call)

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
mu1-mu2 -0.60346 -1.89898 0.69205 FTR H0 0.452139
mu1-mu3 0.37901 -0.91651 1.67453 FTR H0 0.721557
mu2-mu3 0.98247 -0.31304 2.27799 FTR H0 0.148941

We can evaluate data from the new experiments by simply updating promises in my_call:
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eval(my_call, list(y = exp2))

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
mu1-mu2 -0.60346 -1.89898 0.69205 FTR H0 0.452139
mu1-mu3 0.37901 -0.91651 1.67453 FTR H0 0.721557
mu2-mu3 0.98247 -0.31304 2.27799 FTR H0 0.148941

eval(my_call, list(y = exp3))

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
mu1-mu2 -0.60346 -1.89898 0.69205 FTR H0 0.452139
mu1-mu3 0.37901 -0.91651 1.67453 FTR H0 0.721557
mu2-mu3 0.98247 -0.31304 2.27799 FTR H0 0.148941

�

Lazy evaluation will generally not be possible for arguments in generic functions. For instance,

a call to a print method for some S3 object (Section 8.7.1.1). In this case, unless a user

specifies that an argument can use lazy evaluation, all arguments must be assigned values.

This characteristic facilitates the identification of the correct method when making a generic

function call (Section 8.8.3).

8.8.3 Function Evaluation

In this section we have learned that function evaluation in R often requires the use of en-

vironmental search paths (Section 8.8.1.1.2), call stacks (8.8.1.1.3), and promises with lazy

evaluation (Section 8.8.2).

Assume we are calling some function, e.g., pairw.anova() (Fig 8.6). Important components

of the function’s search path can be broken into five sequential steps (Gupta, 2012).

1. If the function exists in the current environment – for example, it was created in

R_GlobalEnv or resides within another function that is currently being executed– then

Rwill find the function immediately, because R looks in the current environment first.

2. If the function is not in the current environment, then R looks to the parent environment

of the function. For pairw.anova() this is namespace: asbio (Fig 8.6). Other asbio

functions called by pairw.anova(), e.g., lsdCI() also have namespace: asbio as their
immediate parent, and can be located at this step.

3. If the function is not in the namespace environment, then R looks to the imports

environment of the namespace. For instance, recall that lsdCI() which is called

by pairw.anova() requires stats::anova(). This function can be readily located

because a promise to load the stats package is in imports: asbio.
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4. If the function is not in the imports environment, then R looks to the enclosing envi-

ronment of the imports environment, which is always namespace: base. For instance,
lsdCI() requires sum(), tapply() and several other base function. These functions

would be obtained at this step.

5. If the function is not found innamespace: base, then a search is initiated, beginningwith

R_GlobalEnv and ending with R_EmptyEnv (see Fig. 8.5). If a dependency is specified
in Depends rather than the imports environment, then this is where the function would

be found, if it exists at all.

Note that these steps will largely prevent over-writing/masking of important underlying

functions.

• First, the developer-defined imports environment of the namespace of a function foo
will force foo to use the names/content of packages in the imports environment, first.

Thus, if an object in the global environment uses a name that is also used by imported

packages, the imported package object will override the global environment object.

• Second, base package objects are protected because they are always considered directly

after the imported names in the search list for a packaged function.

• Finally, an unsuccessful search will be safely terminated by arriving at R_EmptyEnv.

Once a function is “found”, evaluation of a function call proceeds, following a three step process

(Chambers, 2008).

1. User-defined arguments are matched with required formal arguments (promises).

2. A new execution environment is created and objects for each each required formal are

assigned to that environment.

3. The body of the function is then evaluated.

Objects called in the execution environment of a function are located using essentially the same

steps described above for finding functions. That is, the execution environment of the function

is searched first. If no matches are found an external search path is followed, starting with the

function environment, then R_GlobalEnv (if it is different from the function environment), and

ending with R_EmptyEnv.

Example 8.33.

Consider the following examples:

y <- 10
f <- function(x){y}
f(3)

[1] 10

f <- function(x){x + y}
f(3)

[1] 13



8.8. HOW FUNCTIONS WORK: ENVIRONMENTS, PROMISES, AND FUNCTION EVALUATION339

f <- function(x){
z <- x - 1
x + y + z}

f(3)

[1] 15

�

Function evaluation may also require calls or direct use of generic functions. The correct

method for a generic function call, e.g., print(), is identified using a process calledmethod dis-

patch. Method dispatch steps in R can be identified using the function sloop::s3_dispatch.

Example 8.34.

Here is the process of identifying the correct printing method for an object of class

asbio::pairw (see Example 8.19).

tukey <- pairw.anova(y = eggs, x = trt)
class(tukey)

[1] "pairw"

sloop::s3_dispatch(print(tukey))

=> print.pairw
* print.default

The output: => print.pairw indicates that the base function UseMethod() has found a print

method for the object tukey (which has class pairw), and that it is called print.pairw(). The
output * print.default indicates that a generic print method exists, and that the function

print.pairw()will be used in this capacity for tukey.

�

Exercises

1. Divide the plant height and soil N values from the dataset from Q. 3 in the Exercises for

Chapter 3 (the first two columns of the dataset) by their respective column sums by

specifying an appropriate function as the 3rd argument for apply().

2. Below is McIntosh’s index of site biodiversity (McIntosh, 1967):

𝑈 = √
𝑠

∑
𝑖=1

𝑛2
𝑖

where 𝑠 is the total number of species from a particular site, and 𝑛𝑖 is the number of

individuals from the 𝑖th species, 𝑖 = 1, 2, 3,… 𝑠, from that site.
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(a) Write a function to calculate the index.

(b) Check it by running it on the following collection of 𝑛𝑖𝑠 obtained from a single site:

ni <- c(5,4,5,3,2).

3. Below is the Satterthwaite formula for approximating degrees of freedom for the 𝑡
distribution, under heteroscedasticity:

(𝑆2
𝑥

𝑛𝑥
+ 𝑆2

𝑦
𝑛𝑦
)
2

(𝑆2
𝑥/𝑛𝑥)

2

𝑛𝑥−1 + (𝑆2
𝑦/𝑛𝑦)

2

𝑛𝑦−1

where 𝑆2
𝑥 is the sample variance for variable 𝑥, 𝑆2

𝑦 is the sample variance for variable 𝑦,
𝑛𝑥 is the sample size for 𝑥, and 𝑛𝑦 is the sample size for 𝑦.
(a) Write a function for this equation that has the variables 𝑥 and 𝑦 as arguments.

(b) Test the function for x <- c(1,2,3,2,4,5) and y <- c(2,3,7,8,9,10,11).

4. Create a function, implementing switch(), that can calculate the first or second deriva-

tive of a mathematical expression with respect to "x". Test it on x^3.

5. Create a function that calculates trimmed means for columns in a quantitative matrix or

dataframe. Within the function, use the triple dot operator as an argument in mean(),
to allow: 1) user-defined trimming (trim is an argument in the function mean()), and
2) user-defined handling of NA outcomes (na.rm is also an argument in mean()). Your
function should have two arguments: one for input data, and one for the triple dot

operator, ... . Test the function on the first two columns of asbio::cliff.sp. In your

test specify both 10% trimming, and the removal of missing values.

6. The Fibonacci sequence describes characteristics of many biological systems, including

growth patterns in awide variety of plant species (Brousseau (1969), Douady andCouder

(1996), Fig 8.7), and the ancestral pedigrees of bees (Basin, 1963). The sequence is

based on the function:

𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) for 𝑛 > 2
𝑓(1) = 𝑓(2) = 1

where 𝑛 represents the 𝑛th step in the sequence. Using a loop, obtain the first 100

numbers in the sequence, i.e., find 𝑓(1) to 𝑓(100). As a check, the first five numbers in

the sequence should be: 1, 1, 2, 3, 5.
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Figure 8.7: The numbers of spirals of disk flowers in yelow chamomile (Asteraceae: Cota

tinctoria), correspond to the seventh and eighth consecutive Fibonacci numbers: 13 (shown

with cyan lines) and 21 (shown with blue lines). https://commons.wikimedia.org/w/index.

php?title=File:FibonacciChamomile.PNG&oldid=826903124

7. An interesting chaotic recursive sequence has the function:

𝑓(𝑛) = 𝑓(𝑛 − 𝑓(𝑛 − 1)) + 𝑓(𝑛 − 𝑓(𝑛 − 2)) for 𝑛 > 2
𝑓(1) = 𝑓(2) = 1

Using a loop, obtain the first 100 numbers in the sequence, i.e., find 𝑓(1) to 𝑓(100). As a
check, the first five numbers in the sequence should be: 1, 1, 2, 3, 3.

8. Create an R animation from a for loop 360 steps long that changes the font-size, color,

and string rotation of your name (as a character string) in an otherwise empty plot.

Assuming the index i is used, your loop should include something resembling the code:

plot(1:10, type = "n")
text(5.5, "your name", cex = i/36, srt = i, col = i)
Sys.sleep(0.1)

9. The Stirling number of the second kind (or the Stirling partition number) counts the

number of ways a set of 𝑛 objects can be partitioned into 𝑘 groups. This is generally

denoted 𝑆(𝑛, 𝑘) or {𝑛
𝑘}, and is calculated as:

{𝑛
𝑘
} =

𝑘
∑
𝑖=0

(−1)𝑘−𝑖𝑖𝑛

(𝑘 − 𝑖)!𝑖!
.

Write a function that calculates {𝑛
𝑘}without using a for loop. Use the form: stirling2

<- function(n, k){function contents}.

10. The Bell number,𝐵𝑛, counts the number of ways a set with𝑛 elements can be partitioned

(Bell, 1938). That is, 𝐵𝑛 will be the sum of Stirling numbers for a particular set, for

 https://commons.wikimedia.org/w/index.php?title=File:FibonacciChamomile.PNG&oldid=826903124
 https://commons.wikimedia.org/w/index.php?title=File:FibonacciChamomile.PNG&oldid=826903124
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𝑘 = {1, 2,… , 𝑛}:

𝐵𝑛 =
𝑛
∑
𝑘=1

{𝑛
𝑘
} .

Write a function for calculating𝐵𝑛 that uses stirling2, from Q 9, in a for loop. Use the

form: belln <- function(n){function contents}.

11. The exercise below concerns the speed of loops in R. Find the mean estimates of

Loblolly$height for each level in Loblolly$seed, with and without a loop, and find

the run times of those operations using the script below:

#---- with loop ----#
out <- 1 : nlevels(Loblolly$Seed)

system.time(for(i in levels(Loblolly$Seed)){
temp <- Loblolly[Loblolly$Seed == i,]
out[i] <- mean(temp$height)
})

#---- without loop ----#
system.time(tapply(Loblolly$height, Loblolly$Seed, mean))

Describe and discuss your results.

12. Write a function to solve the systems of ODEs below

𝑑𝑥
𝑑𝑡

= 𝑎𝑥 + 𝑏𝑦

𝑑𝑦
𝑑𝑡

= 𝑐𝑥 + 𝑑𝑦

To test the function, let 𝑎 = 3, 𝑏 = 4, 𝑐 = 5, 𝑑 = 6, and solve for for 𝑡 = 1, 2,… , 20,
using classical Runge-Kutta 4th order integration, as implemented by the function

deSolve::rk4(). Initial values for 𝑥 and 𝑦 can be anything but {0, 0}.

13. Make output from the function in the previous question have an S3 class, and create a

plotting method for objects of this class.

14. Provide distinguishing characteristics of an R environment and an R list.

15. With respect to special R environments:

(a) Distinguish the current, execution, and empty environments.

(b) Distinguish the package, namespace, and execution environments.

(c) Describe the “meaning” of the current environment.

16. Obtain all ancestor environments for the function asbio::G.mean().



Chapter 9

R Interfaces

“You should try things; R won’t break.”

- Duncan Murdoch, from R-help (May 2016)

9.1 Introduction

R can be interfaced with non-native software packages or languages using a software binding

procedure called an application programming interface (API)1. The binding provides glue code

that allows R to work directly with foreign systems that extend its capacities. This can be done

in two basic ways.

First, R-bindings for external, self-contained software programs can be used. This allows

R-users to: 1) parameterize and initiate an external program using wrapper functions, and,

2) access the output from that program for further analysis and distillation. If one is using

existing APIs, then these operations will generally not require knowledge of non-R languages

(as the heavy lifting is being done with utility functions within particular R packages). One

will, however, have to install the R package containing the API(s), and the software that one

wishes to interface.

Second, one can harness useful characteristics of non-R languages by: 1) writing or utilizing

source code for procedures in those languages, and 2) using APIs to run those processes in R,

possibly following their compilation into entities called executable files (Section 9.1.4).

Although bindings for external software are considered briefly (Section 9.1.1), this chapter

focuses primarily on interfaces of the second type, particularly bindings to the programming

languages Fortran, C, C++, SQL, and Python. Brief backgrounds to those languages are provided

here. These, however, should not be considered thorough introductions, given that: 1) I am

not a computer language polyglot, and 2) my focus is to demonstrate how other languages can

be interfaced with R, and not the languages themselves. Appropriate references to language

1For more information see Wikipedia (2024g).

343
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resources are provided throughout the chapter2.

9.1.1 R Bindings for Existing External Software

Many applications exist for interfacing R with extant, biologically-relevant software. For

example, the R package arcgisbinding3 allows R-based geoprocessing within ArcGIS Pro and

ArcGIS Enterprise.

Example 9.1.

Here I establish a connection to the ArcGIS software package on my computer from within R.

library(arcgisbinding)
arc.check_product()

product: ArcGIS Pro (13.5.0.57366)
license: Advanced
version: 1.0.1.311

�

The R package igraph (Csárdi et al., 2025) provides C-bindings for an extensive collection

of graph-theoretic tools that can be applied in biological settings, e.g., Aho et al. (2023a).

Wrappers for open-source bioinformatics software include the R package RCytoscape, from the

Bioconductor repository, which allows cross-communication between the popular Java-driven

software for molecular networks Cytoscape; the R package dartR.popgen which interfaces

with C-based STRUCTURE software for investigating population genetic structure; and the R

package strataG (currently only available on GitHub) which can interface with STRUCTURE,

along with the bioinformatics apps: CLUMPP, MAFFT, GENEPOP, fastsimcoal, and PHASE.

R can also be accessed from popular commercial software. This capacity is particularly evident

in commercial statistical software, including SAS, SPSS, and MINITAB.

9.1.2 InterfacingWith Non-R Languages

Source code from other languages can often be interfaced to R at the command line prompt,

and within R functions. For instance, we have already considered the use of Perl regex calls for

managing character strings in Ch 4 (Section 4.3), and the RMarkdown document processing

workflow is largely a chain of Markup language conversions (Section 2.10.2.1). Other examples

include code interfaces from C, Fortran, C++, SQL, and Python (all formally considered in this

chapter), MATLAB (via package R.matlab, Bengtsson (2022)), and Java (via package rJava,

2R bindings for languages used primarily for GUI generation and web-based applications, for example, Tcl/Tk,

JavaScript, JavaScript Object Notation (JSON), HTML, and Cascading Style Sheets (CSS), are briefly considered in

Ch 11.
3This package can be installed from r.esri.com using: install.packages("arcgisbinding",

repos="https://r.esri.com", type="win.binary").

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-enterprise/overview
https://bioconductor.org/
https://cytoscape.org/
https://web.stanford.edu/group/pritchardlab/structure.html
https://rosenberglab.stanford.edu/clumpp.html
https://mafft.cbrc.jp/alignment/server/index.html
https://genepop.curtin.edu.au/
https://cmpg.unibe.ch/software/fastsimcoal28/
https://stephenslab.uchicago.edu/phase/download.html
https://support.sas.com/documentation/cdl/en/imlug/67502/HTML/default/viewer.htm#imlug_r_toc.htm
https://www.ibm.com/docs/en/spss-statistics/saas?topic=r-using-integration-package-spss-statistics
https://support.minitab.com/en-us/minitab/integration/r-integration-guide/install-r-and-mtbr/
https://r.esri.com
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Urbanek (2021))4.

9.1.2.1 Costs/Benefits of Interfacing Non-R Scripts

There are costs and benefits to creating/using interface scripts. Costs include:

• Scripts written in non-interpreted languages (e.g., C, Fortran, C++, see Section 9.1.4) will

require compilation. Therefore itmay bewise to limit such code to package-development

applications (Ch 10) because R built-in procedures can facilitate this process during

package building.

• Interfacingwith older, low level languages (e.g., Fortran and C (Section 9.2)) increases the

possibility for programming errors, often with serious consequences, including memory

faults. That is, bugs bite (Chambers, 2008)!

• Interfacing with some languages may increase the possibility for programs being limited

to specific platforms.

• R programs can often be written more succinctly. For instance, Morandat et al. (2012)

found that R programs are about 40% smaller than analogous programs written in C.

Despite these issues, there are a number of strong potential benefits. These include:

• A huge number of useful, well-tested applications have been written in other languages,

and it is often straightforward to interface those procedures with R.

• The system speed of other languages may be much better than R for many tasks. For

instance, looping algorithms written in non-interpreted languages, are often much faster

than corresponding procedures written in R.

• Non-OOP languages may be more efficient than Rwith respect to memory usage.

9.1.3 Interfacing with R Markdown/RStudio

Language and program interfacing with R can be greatly facilitated with RMarkdown chunks.

This is because many languages other than R are supported by RMarkdown, via knitr. The

language definition for a particular RMarkdown chunk is given by the first term in that chunk.

For instance, ```{r } ``` initiates a conventional R code chunk, whereas ```{python }```
initiates a Python code chunk. Here are the current RMarkdown language engines (note that

items 52-64 are not explicit computer languages).

names(knitr::knit_engines$get())

[1] "awk" "bash" "coffee" "gawk" "groovy"
[6] "haskell" "lein" "mysql" "node" "octave"
[11] "perl" "php" "psql" "Rscript" "ruby"
[16] "sas" "scala" "sed" "sh" "stata"
[21] "zsh" "asis" "asy" "block" "block2"

4R can also be called from a number of different language frameworks including C and C++ (see package

RInside, Eddelbuettel et al. (2023b), and Section 11.6 for specific examples), Python (via the Python package,

rpy2), and Java (via the Java package RCaller, Satman (2014)).

https://github.com/rpy2
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[26] "bslib" "c" "cat" "cc" "comment"
[31] "css" "ditaa" "dot" "embed" "eviews"
[36] "exec" "fortran" "fortran95" "go" "highlight"
[41] "js" "julia" "python" "R" "Rcpp"
[46] "sass" "scss" "sql" "stan" "targets"
[51] "tikz" "verbatim" "glue" "glue_sql" "gluesql"
[56] "theorem" "lemma" "corollary" "proposition" "conjecture"
[61] "definition" "example" "exercise" "hypothesis" "proof"
[66] "remark" "solution"

As evident in the output above, RMarkdown engines extend to compiled languages including

Fortran (engine = fortran), C (engine = c) and C++, via the Rcpp package (engine = Rcpp).

9.1.4 Interpreted and Compiled Languages

Source code refers to human-readable instructions under the grammatical framework of some

programming language. For instance, the script

x <- c(1,3,6)
mean(x)

[1] 3.3333

is an example of R source code, with its evaluation result shown.

A computer, however, only fundamentally understandsmachine code (also called object code)5.

Conventionally, machine code is a binary {0, 1} representation of a source code procedure

(Section 12.2). The machine code for the R script x <- c(1, 3, 7); mean(x) is not show
here. However, the binary (see Ch 12) translation of 3.33 ̄3, is:

asbio::dec2bin(mean(x))

[1] 11.0101010101

Source code must be translated into machine code before a computer can execute it.

Non-interpreted (compiled) languages (for instance, Fortran, C, C++, C#, and Java) use a

compiler (a conversion program) to transform source code into machine code (Ch 11). The

result of this process is often called an executable file, or simply an executable (Figure 9.1).

Executables can be called from within R (or elsewhere) to run independently, or to enhance

other functions and procedures.

5Machine code is the lowest level interface to a computer. Assembly language, mentioned briefly in Section

1.4.1 is a higher level process that is not strictly numerical, although it provides direct map between machine

code and human-readable mnemonics (Wikipedia, 2025a).
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Figure 9.1: Creating an executable file in a compiled language.

Compilers are often specific to underlying compiled languages. For instance, the ILCPU com-

piler is intended only for C# code, and the clisp compiler is intended for Lisp. The following

compilation frameworks are very important toR-users. The last two are particularly important

for Windows platforms.

• The GNU Compiler Collection (GCC) contains a large number of open source compilers,

including gcc (for C), g++ (for C++), and gfortran (for Fortran).

• MinGW (“Minimalist GNU forWindows”) is a free open source development environment

for creating Windows applications. It includes a GCC port, along with other compilation

tools specifically for Windows.

• Rtools is a Windows toolchain, intended primarily for building packages (and R) from

source code. As of version 4.5, Rtools includes Msys2 –a collection of tools and libraries

for building, installing and runningWindows software, the GCC14/MinGW-w64 compiler

toolchain for Windows, and QPDF –a command line tool and C++ library that performs

content-preserving transformations on PDF files.

R, along with many other useful languages (e.g., Python, JavaScript), is considered an inter-

preted language. In programming, an interpreter directly executes source code without the

requirement of compilation. R uses a Scheme-like interpreter to translate source code into

an intermediate representation of source code and machine code entities, which is then im-

mediately executed. These operations are generally underlain by the language C. Because

translation must precede machine code implementation, interpreted procedures tend to be

slower than fully compiled procedures. This is particularly true for iterative processes like

loops.

9.1.5 Shells

Compiling object code will require installation/access to an appropriate compiler program. A

compiler, in turn, will likely require initiation from a shell command line.

https://github.com/CosmosOS
https://gitlab.com/gnu-clisp/clisp
https://gcc.gnu.org/
https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/
https://cran.r-project.org/bin/windows/Rtools/rtools44/rtools.html
https://www.msys2.org/
https://github.com/qpdf/qpdf
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The Windows OS currently has two built-in command line shells6. The Command shell (also

know as cmd.exe or cmd), was introduced in 1993 and maintains strong similarities to the

MS-DOS command framework (see Wikipedia (2023b)). PowerShell, introduced in 2006, is

back-compatible with most cmd commands, but also has advanced programming features,

including the ability to generate objects and handle OOP scripts. Other differences between

cmd and PowerShell are discussed here. Commands and processes forWindows shells differ in

many respects from the POSIX (PortableOperating System Interface) compliant shells generally

used by Unix-like systems. The most widely used POSIX shell, BASH, allows straightforward

execution and modification of Linux/Unix operations that may be difficult to translate to

Windows OS7. The Windows Subsystem for Linux (WSL) allows one to run Linux, including

BASH shells, directly in Windows. I strongly recommend WSL for complex compilation of

scripts using makefiles (Section 11.6), Windows management of R-driven apps in servers

(Section 11.5.7) and high performance computing projects using R (Section 12.8.1).

Table 9.1 shows some shell commands, including several that work the same way in both Win-

dows and Linux/BASH. Additional guidance for Windows shells can be found at the learn.mi-

crosoft.com website. Additional guidance for BASH can be found here.

Table 9.1: Command shell commands for Windows (i.e., Command shell and PowerShell) and

BASH.

Operation Windows BASH/Linux

Change directory cd cd
Navigate to address cd <path> cd <path>
Navigate ”up” one directory cd .. cd ..
Return to the root dirctory cd\\ cd or cd
Clear command line cls clear -x
List files in directory dir ls
Copy file copy <file> cp <file>
Move file move <file> <destination> mv <file> <destination>
Find a string findstr <string> grep <string> <path>
Get help <command> \? or help <command> <command> --h

Example 9.2.

The default home directory for my computer is: C:\Users\ahoken. To navigate to the root

(parent) directory of this hierarchy, I could type cd/ (Table 9.1) in theWindows cmd Command

shell.:

6The Windows Command shell interface can be accessed by typing: Windows key + R , typing cmd in the

interactive GUI, and pressing Enter , or by typing cmd in the Windows Search bar. Similarly, PowerShell can be

accessed by typing powershell in the Windows Search bar.
7BASH is short for Bourne Again SHell. The Bourne shell, developed in the late 1970s, is named for Stephen

Bourne who led its development while working at Bell Labs from 1975-1983.

https://blog.temok.com/powershell-vs-cmd/
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://www.freecodecamp.org/news/linux-command-line-bash-tutorial/
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C:\Users\ahoken> cd/
C:\>

Note that the shell has the same command line prompt as R: >.

�

Example 9.3.

What if I wanted to list all theR-Markdown files (thosewith an .rmd file extension) in the home

directory for this book? I could navigate to the correct directory, and type dir /b *.rmd in
the Windows Command shell:

C:\> cd C:\Users\ahoken\Documents\GitHub\Amalgam
C:\Users\ahoken\Documents\GitHub\Amalgam> dir /b *.rmd
01-Ch1.Rmd
02-Ch2.Rmd
03-Ch3.Rmd
04-Ch4.Rmd
05-Ch5.Rmd
06-Ch6.Rmd
07-Ch7.Rmd
08-Ch8.Rmd
09-Ch9.Rmd
10-Ch10.Rmd
11-Ch11.Rmd
12-Ch12.Rmd
13-references.Rmd
index.Rmd

The \b option in dirmeans: “use a bare format (no heading information or summary).” The

asterisk, *, is a wildcard, indicating that only files with a .rmd extension should be listed.

�

Example 9.4.

To search for the text: "An Amalgam of R" in the RMarkdown document index.rmd, I could

use the findstr command:

C:\Users\ahoken\Documents\GitHub\Amalgam> findstr "\"An\ Amalgam\ of\ R\"" index.rmd
title: "An Amalgam of R"

Note that I escape both quotes and spaces in the string. The entire line of text containing the

string is: title: "An Amalgam of R" and is part of the YAML header in index.rmd (Section

2.10.2.1). For more information type findstr \? in the Windows Command shell (Table 9.1).

It is easier to search for text strings using BASH under a regex approach (Section 4.3.6). Here I
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access the Ubuntu version of Linux implemented in WLS from aWindows shell, and navigate

to the home directory of this book:

> wsl.exe -d Ubuntu

Welcome to Ubuntu 24.04.3 LTS (GNU/Linux 6.6.87.2-microsoft-standard-WSL2 x86_64)

$ cd Documents/GitHub/Amalgam

Note that the BASH command line operator is $. Here I get an approximate count of the number

of RMarkdown R code chunks in the book by querying the string '{r'within underlying .Rmd

files, using the grep option -c.

Documents/GitHub/Amalgam$ grep -c '{r' *.Rmd
01-Ch1.Rmd:16
02-Ch2.Rmd:174
03-Ch3.Rmd:256
04-Ch4.Rmd:102
05-Ch5.Rmd:53
06-Ch6.Rmd:138
07-Ch7.Rmd:116
08-Ch8.Rmd:175
09-Ch9.Rmd:158
10-Ch10.Rmd:23
11-Ch11.Rmd:161
12-Ch12.Rmd:42
13-references.Rmd:0
index.Rmd:5

There are over 1400 R chunks in the book (including some, hidden, formatting scripts)8, and

256 occur in Chapter 3. Here are the number of C++, SQL and Python chunks used in the

current chapter:

$ grep -c '{Rcpp' 09-Ch9.Rmd
30
$ grep -c '{sql' 09-Ch9.Rmd
16
$ grep -c '{python' 09-Ch9.Rmd
45

�

8To sum the occurrences of '{r' in the Chapters, I could have used: grep -c '{r' *.Rmd | awk -F:
'{n+=$2} END {print n}'.

https://ubuntu.com/
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CAUTION!

Shells are powerful tools, and serious damage can be done to your computer through

their misapplication. This is particularity true when running destructive commands,

e.g., del, rmdir, format as an Administrator.

9.1.6 Compilation for R Interfacing

Windows and Mac OS executables will generally have an .exe or .app extension, respectively,

although extensions for Linux/Unix files are not required for a file be recognized and run as

an executable. For distribution in R packages, however, executables must have a shared library

format, with .dll, .dylib, and .so, extensions for Windows, Mac OS, and Linux/Unix operating

systems, respectively9. Shared library objects are different from conventional executables in

that they cannot be evaluated directly. In this case, Rwill be required as the executable entry

point.

R provides shared library compilers for Fortran and C and several other languages via its

SHLIB procedure, which is accessed from the Rcmd executable. The Rcmd program is located in

the R bin directory, following a conventional download from CRAN, along with several other

important R executables, including R.exe and Rgui.exe. Rcmd procedures are typically in-
voked from a shell (e.g., cmd.exe) using the format: R CMD procedure args. Here procedure
is currently one of INSTALL, REMOVE, SHLIB, BATCH, build, check, Rprof, Rdconfig, Rdiff,
Rd2pdf, Stangle, Sweave, config, open, and texify, and args defines arguments specific to

the Rcmd command10. For example, the shell script:

R CMD SHLIB foo

would prompt the building of a shared library object from the user-defined script foo, which

could be comprised, for example, of Fortran, C, or C++ source code11. There are actually many

ways to compile shared libraries for use in R.

• First, as noted above, one could compile a shared library from some script, foo, by
running R CMD SHLIB foo at a shell command line. The shared library could then be

loaded and called, using an appropriate foreign function interface. I apply this approach

from the Windows Command shell in Example 9.6.

• Second, one could rely only on RMarkdown engines (see Section 2.7 in Xie et al. (2020)).

In particular, one could write a script for a compiled language within a chunk with an

approriate language engine. The chunk would be automatically compiled using SHLIB
when running the chunk. The resulting shared library could then be loaded and called

in a subsequent R chunk, using an appropriate foreign function interface, e.g., .Call()
(see Section 9.2). Unfortunately, this process may be hampered by a number of factors,

9The Windows extension .dll identifies a Windows dynamic-link library (DLL) file, as does the Mac OS .dylib

extension. The Linux/Unix .so stands for shared object or shared library file.
10Several of these commands are addressed in Ch 10, including INSTALL, check, BATCH, build, AND Rd2pdf.
11SHLIB stands for shared library.

https://bookdown.org/yihui/rmarkdown/language-engines.html
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including non-administrator permissions and incorrect environmental path definitions,

particularly on Windows computers.

• Third, one could use a non-RCMD SHLIB compiler, for instance Windows GCC tools in

Rtools. Rtools compilers are used throughout Section 9.3. The package inline uses the

GCC to allow users to create, compile, and run scripts, written in compiled languages, all

from the R command line (see Section 9.3.2).

9.2 Fortran and C

S, the progenitor of R, was created at a time when Fortran12 routines dominated numerical

programming, andR arose when C13 was approaching its peak in popularity. As a result, strong

connections to those languages, particularly C, remain inR14.R contains specific base functions

for interfacing with both C and Fortran executables: .C() and .Fortran(). A more recently

developed function, .Call(), which allows straightforward exchanges of SEXP objects to and
from C, is formally introduced in Section 9.3.

Recall that an R object of class numericwill be automatically assigned to base type double,
although it can be coerced to base type integer (with information loss through the elimination

of its “decimal” component).

as.integer(2.5)

[1] 2

Many other languages, however, do not automatically assign base types. Instead, explicit

user-assignments for underlying base types are required.

If one is interfacingRwith Fortran or C, only a limited number of base types are possible (Table

9.2), and one will need to use appropriate coercion functions for R objects if one wishes to use

those objects in Fortran or C scripts15. When using .C() and .Fortran(), Interfaced C script

arguments must be pointers, and arguments in Fortran scripts must be arrays for the types

given in Table 9.2.

Raw Fortran source code is generally saved as an .f, or (.f90 or .f95; modern Fortran) file,

12As noted in Ch 1, Fortran is one of the oldest programming languages still in active use. Although Fortran’s

development followed an IBM proposal for an alternative to assembly language in 1953 (Backus, 1998), and

the first correctly compiled version of Fortran occurred in 1958, Fortran remains among the top programming

languages in the TIOBE index (Wikipedia, 2024f). Early iterations of S were strongly dependent on Fortran

procedures (Section 1.4).
13Recall from Ch 1 that C is a widely-used general programming language developed during the 1970s (Ritchie,

1993). Further, because R is largely written in C, it is not surprising that the most direct language for interfacing

with R is C (Chambers, 2008).
14The complete R API for C can be viewed by typing: `rinternals <- file.path(R.home("include"),

"Rinternals.h"); file.show(rinternals)` in the R console.
15The functions .Call() and External() expect that R-dependent objects will be used (as declared SEXP

objects). The functions .C() and .Fortran() assume that R objects will not be directly used in algorithms.

https://www.tiobe.com/tiobe-index/
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Table 9.2: Correpsonding types for R, C, and Fortran. Table adapted from Chambers (2008).

**R** base type **R** coercion function C type Fortran type

logical as.integer() int * integer
integer as.integer() int * integer
double as.double() double * double precision
complex as.complex() Rcomplex * double complex
charater as.character() char ** character*255
raw as.character() char * none

whereas C source code is saved as an .c file. One can create a file with the correct file type

extension by using file.create().

Example 9.5.

For example, below I create a file called foo.f90 that I can open (from my working directory)

in a text editor (e.g., Notepad) or IDE (e.g., RStudio) to build a Fortran script.

file.create("foo.f90")

�

RStudio provides an IDE for C, allowing straightforward generation of .c files.

9.2.1 Compiling and Executing C and Fortran Programs

Notably, the SHLIB compilers will only work for Fortran code written as a subroutine16 and C

code written in void formats17. As a result, neither code type will return a value directly.

Example 9.6.

Here is a simple example for calling Fortran and C compiled executables from R to speed

up looping. The content follows class notes created by Charles Geyer at the University of

Minnesota. Clearly, the example could also be run without looping. Equation (9.1) shows the

simple formula for converting temperature measurements in degrees Fahrenheit to degrees

Celsius.

𝐶 = 5/9(𝐹 − 32) (9.1)

where 𝐶 and 𝐹 denote temperatures in Celsius and Fahrenheit, respectively.

Here is a Fortan subroutine for calculating Celsius temperatures from a dataset of Fahrenheit

measures, using a loop.

16A Fortran subroutine is invoked with a CALL statement. Unlike a Fortran function, which returns a single

value, a subroutine can return many (or no) values.
17Void functions in C are used for their side effects, such as performing a task or writing to output.

http://users.stat.umn.edu/~geyer/rc/
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1 subroutine FtoC(n, x)
2 integer n
3 double precision x(n)
4 integer i
5 do 100 i = 1, n
6 x(i) = (x(i)-32)*(5./9.)
7 100 continue
8 end

The Fortran code above consists of the following steps:

• OnLine 1 a subroutine is invokedusing the Fortran functionsubroutine. The subroutine
is named FtoC, and has arguments x (the Fahrenheit temperatures) and n (the number

of temperatures)

• On Line 2 the entry given for n is defined to be an integer (Table 9.2).

• On Line 3 we define x to be a double precision numeric vector of length n.
• On Line 4 we define that the looping index to be used, i, will be an integer.

• On Lines 5-7 we proceed with a Fortran do loop. The code do 100 i = 1, nmeans

that the loop will 1) run initially up to 100 times, 2) has a lower limit of 1, and 3) has

an upper limit of n. The code: x(i) = (x(i)-32)*(5./9.) calculates Eq. (9.1). The

code 5./9. is used because the result of the division can be a non-integer. The code 100
continue allows the loop to continue to n.

• On Line 8 the subroutine ends. All Fortran scripts must end with end.

I save the code under the filename FtoC.f90, and transfer it to an appropriate directory (I

use C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/). I then open a

Windows shell editor.

I compile FtoC.f90using the script R CMD SHLIB FtoC.f90. Thus, at theWindowsCommand

shell I enter:

> cd C:\Program Files\R\R-4.4.2\R\bin\x64
> R CMD SHLIB C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoC.f90

Note the change from back slashes to (Unix-style) forward slashes when specifying addresses

for SHLIB. The command above creates the compiled Fortran executable FtoC.dll. Specifically,
the Fortran compiler, gfrotran, from within the GCC, is used to create an intermediate object

file, FtoC.o. The object file is then used to create a .dll file with the gcc program. By default,

the .dll is saved in the directory that contained the source code. Finalization of the compilation

requires linkage to the the RTools MinGW toolchain.

Steps in the compilation process can be followed (with some difficulty) in the Windows shell

output below. Some lines are broken to increase clarity.

using Fortran compiler: 'GNU Fortran (GCC) 14.2.0'
gfortran -O2 -mfpmath=sse -msse2 -mstackrealign
-c C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoC.f90
-o C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoC.o
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gcc -shared -s -static-libgcc
-o C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoC.dll
tmp.def C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoC.o
-LC:/rtools45/x86_64-w64-mingw32.static.posix/lib/x64
-LC:/rtools45/x86_64-w64-mingw32.static.posix/lib -lgfortran -lquadmath
-LC:/PROGRA~1/R/R-45~1.1/bin/x64 -lR

In the output above, snippets beginning with -, define gfortran and gcc program options

from within the GCC. For instance, -c means “compile and assemble, but do not link,” -o
<file> means “place output in a defined <file>”, and -L<directory> links <directory>
to the program search path. The -O family of flags (including -O0, -O1, and -O2) concern
compilation optimization. The option -O2 indicates “high optimization” at the cost of longer

compilation times. Importantly, the option -shared indicates that a shared library should be

assembled instead of a standard executable. Details on many gcc (and gfortran) options can
obtained by calling gcc --help from the BASH command line. The options -mfpmath, -msse2,
-mstackrealign are so-called “target-specific options.” Details concerning those options are

provided in gcc --help=target.

Here is analogous C loop script for converting Fahrenheit to Celsius.

1

2 void ftocc(int *nin, double *x)
3 {
4 int n = nin[0];
5 int i;
6 for (i=0; i<n; i++)
7 x[i] = (x[i] - 32) * 5. / 9.;
8 }

The C code above consists of the following steps.

• Line 1 is a line break.

• On Line 2 a void function is initialized with two arguments. The code int *ninmeans

“access the value that nin points to and define it as an integer.” The code double *x
means: “access the value that x points to and define it as double precision.”

• Lines 8-9 define the C for loop. These loops have the general format: for ( init;
condition; increment ) {statement(s); }. The init step is executed first and

only once. Next the condition is evaluated. If true, the loop is executed. The syntax i++
literally means: i = i + 1. Note that code lines are ended with a semicolon, : and that

indices (e.g., i) start at 0. Consideration of the language is greatly expanded in Section

9.3, which considers the language C++.

Once again, I save the source code, FtoCc.c, within an appropriate directory. I compile the
code using the command R CMD SHLIB FtoCc.c. Thus, at the at theWindows Command shell
I enter:

> cd C:\Program Files\R\R-4.5.1\bin\x64
> R CMD SHLIB C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoCc.c
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This creates the shared library executable FtoCc.dll.

using C compiler: 'gcc.exe (GCC) 14.2.0'
gcc -I "C:/PROGRA~1/R/R-45~1.1/include"
-DNDEBUG -I "C:/rtools45/x86_64-w64-mingw32.static.posix/include"
-O2 -Wall -std=gnu2x -mfpmath=sse -msse2 -mstackrealign
-c C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoCc.c
-o C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoCc.o
gcc -shared -s -static-libgcc
-o C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoCc.dll
tmp.def C:/Users/ahoken/Documents/GitHub/Amalgam/scripts/FtoCc.o
-LC:/rtools45/x86_64-w64-mingw32.static.posix/lib/x64
-LC:/rtools45/x86_64-w64-mingw32.static.posix/lib
-LC:/PROGRA~1/R/R-45~1.1/bin/x64 -lR

Below is an R-wrapper that can call the Fortran executable, call = "Fortran", the C exe-
cutable, call = "C", or use R looping, call = "R". Several new functions are used. On Line
10 the function dyn.load() is used to load the shared Fortran library file FtoC.dll, while on
Lines 14-15 dyn.load() loads the shared C library file FtoCc.dll. Note that the variable nin
is pointed toward n, and x is included as an argument in dyn.load() on Line 15. On Line 11
the function .Fortran() is used to execute FtoC.dll, and on Line 16 .C() is used to execute
FtoCc.dll.

1 F2C <- function(x, call = "R"){
2 n <- length(x)
3 if(call == "R"){
4 out <- 1:n
5 for(i in 1:n){
6 out[i] <- (x[i] - 32) * (5/9)
7 }
8 }
9 if(call == "Fortran"){

10 dyn.load("C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/FtoC.dll")
11 out <- .Fortran("ftoc", n = as.integer(n), x = as.double(x))
12 }
13 if(call == "C"){
14 dyn.load("C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/FtoCc.dll",
15 nin = n, x)
16 out <- .C("ftocc", n = as.integer(n), x = as.double(x))
17 }
18 out
19 }

Here I create 108 potential Fahrenheit temperatures that will be converted to Celsius using

(unnecessary) looping.

x <- runif(100000000, 0, 100)
head(x)

[1] 91.660 15.116 87.877 10.158 19.373 59.775

Note first that the Fortran, C, and R loops provide identical temperature transformations. Here

are first 6 transformations:
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head(F2C(x[1:10], "Fortran")$x)

[1] 33.1444 -9.3801 31.0429 -12.1343 -7.0151 15.4305

head(F2C(x[1:10], "C")$x)

[1] 33.1444 -9.3801 31.0429 -12.1343 -7.0151 15.4305

head(F2C(x[1:10], "R"))

[1] 33.1444 -9.3801 31.0429 -12.1343 -7.0151 15.4305

However, the run times are dramatically different18. The C executable is much faster than R,

and the venerable Fortran executable is even faster than C!

system.time(F2C(x, "Fortran"))

user system elapsed
0.67 0.10 0.77

system.time(F2C(x, "C"))

user system elapsed
0.61 0.13 0.78

system.time(F2C(x, "R"))

user system elapsed
5.62 0.30 6.07

�

9.3 C++

C++ (pronounced see plus plus) is a high-level, general-purpose, programming language that is

well known for its simplicity, efficiency, and flexibility19. C++ was originally intended to be

a mere extension of C. Although its scope now greatly exceeds this goal, C++ syntax remains

similar to C. For instance, like C:

• C++ is a compiled language (it requires a compiler to convert its source code to an

executable).

• Lines of C++ code end with semicolons, ;.
• C++ comment annotations begin with \\.

18Run on an Intel Core processor with a clock speed of 3 GHz, and 32 GB of RAM.
19C++ was first introduced in 1985 by Danish computer scientist Bjarne Stroustrup –who was then a technical

staff member at Bell Labs– to add OOP features to the C language (Wikipedia, 2024b).
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• The for loop syntax for C++ is: for (init; condition; increment).
• C++ index values start at 0, meaning that the last index value will be n - 1.
• Square braces, [], can be used for subsetting. Although, see content regarding Rcpp C++

types below.

• C++ logical operators are similar to those used inR. For example, == is the Boolean equals

operator, ! is the unary operator for not, and the operators for and and or are && and ||,
respectively.

• Like C, C++ Boolean designations,true and false are used (instead of TRUE and FALSE).

The major difference between C and C++ is that C++ supports objects and object classes,

whereas C does not. Helpful online C++ tutorials and references can be found at https://

www.learncpp.com/ and https://en.cppreference.com/w/cpp, respectively. As advanced

resources, Wickham (2019) recommends the books Effective C++ (Meyers, 2005) and Effective

STL (Meyers, 2001)20.

9.3.1 Rcpp

The R package Rcpp (Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018; Eddelbuettel et al.,

2023a) provides an extension of the R API, with a consistent set of C++ classes (Eddelbuettel

and François, 2023). As a result, the package allows users to employ the many useful charac-

teristics of C++ –including fast loops, efficient calls to functions, and access to advanced data

container classes including maps21 and double-ended queues22, while enjoying the benefits

of R –including terse scripting and straightforward manipulation of vectors and matrices. As

Wickham (2019) notes:

“I do not recommend using C for writing new high-performance code. Instead

write C++ with Rcpp. The Rcpp API protects you from many of the historical id-

iosyncracies of the R API, takes care of memorymanagement for you, and provides

many useful helper methods.”

Useful resources for Rcpp include extensive vignettes from the package itself, Chapter 25 from

Wickham (2019), and the online document Rcpp for everyone (Tsuda, 2020).

In order to use Rcpp, users will require additional toolchains, including a dedicated C++ com-

piler.

• Windows users will need Rtools. Use of Rtools will require that its installation be along

an defined environmental path.

• Mac-OS users will require the Xcode command line tools.

• Linux users can use: `sudo apt-get install r-base-dev`.

20STL refers to the C++ Standard Template Library, which provides useful data structures and algorithms for

C++ programming.
21A map is a C++ standard library, std, class that stores data in the form of key value pairs.
22A double-ended queue (deque) is a data container to which elements can be added to or removed from either

the front (head) or back (tail). Rcpp contains double-ended queue (deque) functions for many of its object classes.

The R function c(), and the Python function append() (Section 9.5) can also be used for this purpose, within

their respective programming settings.

https://www.learncpp.com/
https://www.learncpp.com/
https://en.cppreference.com/w/cpp
https://adv-r.hadley.nz/rcpp.html#rcpp-more
https://teuder.github.io/rcpp4everyone_en/
https://cran.r-project.org/bin/windows/Rtools/index.html
https://mac.install.guide/commandlinetools/
https://en.cppreference.com/w/cpp/container/map
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Example 9.7.

As a first step, Eddelbuettel and Balamuta (2018) recommend running a minimal example to

ensure that the Rcpp toolchain is working. For instance:

library(Rcpp)

evalCpp("2 + 2")

[1] 4

Here the function Rcpp::evalCpp() creates a compiled C++ shared library, specified

in evalCpp(), from the text string "2 + 2". This step is accomplished via the function

Rcpp::cppFunction() (see Example 9.10 below). The evalCpp() function then calls shared

library, using .Call(), to obtain a result in R.

�

9.3.1.1 Data Types

Recall (Section 2.3.6) that R base types correspond to a C typedef alias called an SEXP (S-

expression). Rcpp provides dedicated C++ classes for most of the 24 SEXP types. Some of

these are shown– for scalar, vector, and matrix frameworks– in Table 9.3. Scalars can be aptly

handled with C++ standard library, std, procedures. The Rcpp::Vector types are similar to

std::vector23, although the former are designed to facilitate interactivity with R.

Table 9.3: Correpsonding types for R, C++, and Rcpp. Table adapted from Tsuda (2020).

R type C++ (scalar) Rcpp (scalar) Rcpp::Vector Rcpp::Matrix

logical bool - LogicalVector LogicalMatrix
integer int - IntegerVector IntegerMatrix
numeric double - NumericVector NumericMatrix
complex complex Rcomplex ComplexVector ComplexMatrix
character char String CharacterVector CharacterMatrix
Date - Date DateVector -
POSIXct time_t Datetime DatetimeVector -

Rcpp also has types for R base types list and S4, and R class dataframe. These are called
using Rcpp::List, Rcpp::S4, and Rcpp::Dataframe, respectively. Rcpp types are designated
with their class names.

Example 9.8.

The code (not run) below creates Rcpp::Vector objects called v. Corresponding R code is

commented above C++ code.

23See class documentation here

https://en.cppreference.com/w/cpp/container/vector
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1 // v <- rep(0, 3)
2 NumericVector v (3);
3

4 // v <- rep(1, 3)
5 NumericVector v (3,1);
6

7 // v <- c(1,2,3)
8 // [[Rcpp::plugins("cpp11")]]
9 NumericVector v = {1,2,3};

10

11 // v <- 1:3
12 IntegerVector v = {1,3};
13

14 // v <- as.logical(c(1,1,0,0))
15 LogicalVector v = {1,1,0,0};
16

17 // v <- c("a","b")
18 CharacterVector v = {"a","b"};

Note that curly braces {} are used to initialize the NumericVector object on Line 9, and

the IntegerVector, LogicalVector, and CharacterVector objects on Lines 12, 15, 18, re-

spectively. This reflects C++ 11 grammar24. C++11 can be enabled with the comment: //
[[Rcpp::plugins("cpp11")]] (Line 8).

Here I create Rcpp::Matrix objects named m:

1 // m <- matrix(0, nrow=2, ncol=2)
2 NumericMatrix m(2);
3

4 // m <- matrix(v, nrow=2, ncol=3)
5 NumericMatrix m( 2, 3, v.begin());

The matrix object on Line 4 above is filled using a Vector object named v. This is facilitated
with the Rcpp Vectormember function begin() (Section 9.3.1.2).

Below is a Rcpp::Dataframewith columns comprised of Vectors named v1 and v2.

// df <- data.frame(v1, v2)
DataFrame df = DataFrame::create(v1, v2);

Here is a Rcpp::List containing Vectors v1 and v2.

24C++11, released in 2011, replaced the prior C++ standard, C++03, and was itself replaced by C++ standard

C++14 in 2014. The current standard is C++23.



9.3. C++ 361

// L <- list(v1, v2)
List L = List::create(v1, v2);

�

9.3.1.2 Member Functions

Rcpp has useful C++ member functions (functions that can be used to interact with data of

specific user-defined types) for its Vector, Matrix, List and Dataframe types. Specifically,
for a member function foo that corresponds to a type defined for an object bar, I would run

foo on bar by typing bar.foo(). Note that Rcppmember functions in Table 9.4 with generic

names, e.g., length() are analogous to Rmethods for particular S3 and S4 classes (Section

8.7).

Table 9.4: Some C++ member functions for Rcpp types. To run a member function mfunc() on
an appropriate object x, I would type: x.mfunc().
Function Vector Matrix Dataframe List Operation

length(), size() X X X Returns length, or no. Dataframe columns

names() X X X Names attribute

sort() X X Sorts object into ascending order

get_NA() X X Returns NA values
is_NA(x) X X Returns true if element x is NA
nrows() X X Returns number of rows

ncols() X X Returns number of columns

begin() X X X Returns iterator pointing to first element

end() X X X Returns iterator pointing to end of object

fill_diag(x) X Fill Matrix diagonal with scalar x

9.3.1.3 Math with R-like Functions

Rcpp contains R-like functions that extend C++ stdmathematical procedures evaluated under

the C <math.h> header file, or the C++ <cmath> header. The Rcpp functions allow users to

capitalize on the vectorized efficiencies of R, within C++ scripts, while using R-like grammar.

Table 9.5 shows simple mathematical operators and functions that are generally applicable to

both scalar and Rcpp::Vector objects. Conversely, Table 9.6 shows vectorized R-like functions

from Rcpp, without analogues in <math.h>.

It is important to note that C++, like many other languages including C, and Fortran Python

will often generate integer results from mathematical operations, even though they should be

double precision. This can be readily demonstrated using Rcpp::evalCpp().
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Table 9.5: C++ math.h functions for scalars: s, s1, and s2, and R-like Rcpp functions for a

Vector: v, v1, v2.
Operation C++ scalar Rcpp Vector Description

addition s1 + s2 v + s or v1 + v2 scalar or vector (elementwise) addition

subtraction s1 - s2 v - s or v1 - v2 scalar or vector (elementwise) division

multiplication s1 * s2 v * s or v1 * v2 scalar or vector (elementwise) division

division s1 / s2 v / s or v1 / v2 scalar or vector (elementwise) division

modulo s1 % s2 remainder of division of s1 by s1
∣ 𝑥 ∣ abs(s) abs(v) absolute value(s) of s or elements in v.
round round(s,d) round(v,d) rounds s or elements in v to d digits.√
𝑥 sqrt(s) square root of s

log2 log2(s) log2 of s.
log𝑒 log(s) log(v) log𝑒 of s or elements in v.
log10 log10(s) log10(v) log10 of s or elements in v.
log𝑒 log(s) log(v) log𝑒 of s or elements in v.
𝑒𝑥 exp(s) exp(v) exp() of s or elements in v.
𝑥𝑛 pow(s, n) pow(v,n) raises s or elements in v to nth power.

sin(𝑥) sin(s) sin(v) sine of s or elements in v.
cos(𝑥) cos(s) cos(v) cosine of s or elements in v.
tan(𝑥) tan(s) tan(v) tangent of s or elements in v.
asin(𝑥) asin(s) asin(v) arcsine of s or elements in v.
acos(𝑥) acos(s) acos(v) arccosine of s or elements in v.
atan(𝑥) atan(s) atan(v) arctangent of s or elements in v.

Example 9.9.

Clearly the answer to 5
2 is 2.5. However, running this operation in C++ produces:

evalCpp("5/2")

[1] 2

One way around this is to add a decimal to the end of the 5 and 2, to indicate that they are not
integers. Revisit Example 9.6 for Fortran and C examples of this approach.

evalCpp("5./2.")

[1] 2.5

�

9.3.1.4 Inline C++ Code

The function Rcpp::cppFunction() allows users to specify C++ code for a single function

as a character string at the R command line (see minimal Example 9.7 above). The function

compiles C++ code, and creates a link to the resulting shared library. It then defines an R

function that uses .Call() to invoke the library.
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Table 9.6: R-like Rcpp functions specific to Vector, v, objects.
Operation Rcpp Vector, v Description

min(𝑥) min(v) minimum value of v
max(𝑥) max(v) maximum value of v
∑𝑛

𝑖=1 𝑥𝑖 sum(v) sum of v
cumulative sum cumsum(v) cumulative sum of v
cumulative product cumprod(v) cumulative product of v
range range(v) min and max of v
̄𝑥 mean(v) mean of v

𝑥̃ median(v) median of v
𝑠 sd(v) standard deviation of v
𝑠2 var(v) variance of v
C++ version of R function sapply(v,fun) applies C++ function fun() to v
C++ version of R function lapply(v,fun) applies C++ function fun() to v; returns List
C++ version of R function cbind(x1, x2,...) combines Vector or Matrix in x1, x2
C++ version of R function na_omit(v) returns Vectorwith NA elements in v deleted
C++ version of R function is_na(v) labels NA elements in v TRUE

Example 9.10.

Here is a simple function for generating numbers from a Fibonacci sequence. See Question 6

in the Exercises from Ch 8.

1 cppFunction(
2 'int fibonacci(const int x) {
3 if (x == 0) return(0);
4 if (x == 1) return(1);
5 return (fibonacci(x - 1)) + fibonacci(x - 2);
6 }')

• On Line 2, the C++ function name finbonacci is defined. The function output and the

class of the argument x are both defined to be int (integers).
• On Lines 3-4 the first two numbers in the sequence are defined based on Boolean

operators.

• On Line 5, later numbers in the sequence (𝑛 > 2) are defined.

The result from the script is an R function that loads the compiled shared library, based on the

C++ function fibonacci, using .Call().

fibonacci

function (x)
.Call(<pointer: 0x00007ffc41a01860>, x)

Here we use the R function to generate the 10th Fibonacci number.
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fibonacci(10)

[1] 55

�

TheR function Rcpp::sourceCpp()allows general compilation of C++ scripts thatmay contain

multiple functions.

9.3.1.5 Formal C++ Scripts

We can use Rcpp to facilitate the creation of more conventional C++ scripts (not just character

strings of C++ code). These will have the general form (Tsuda, 2020):

1 #include <Rcpp.h>
2 using namespace Rcpp;
3

4 // [[Rcpp::export]]
5 RETURN_TYPE FUNCTION_NAME(ARGUMENT_TYPE ARGUMENT){
6 //function contents
7 return RETURN VALUE;
8 }

• On Line 1, the code #include <Rcpp.h> loads the Rcpp header file Rcpp.h. In several C-

alike languages (C, C++, C-obj), header files can be use to provide definitions for functions,

variables, and (in the case of C++) new class definitions (Table 9.3). See Chapter 6 in R

Core Team (2024c).

• The (optional) codeusing namespace Rcpp (Line 2) allowsdirect access toRcpp classes

and functions. Without this designation, an Rcpp function or class foowould require

the call Rcpp::foo, instead of simply, foo.
• The comment: // [[Rcpp::export]]� (Line 4) serves as a compiler attribute, and de-

marks the beginning of C++ code that will be accessible from R. The Rcpp::export
attribute is required (by Rcpp) for any C++ script to be run from R. The attribute cur-

rently requires specification as a comment, because it will be unrecognized within most

compilers.

• For RETURN_TYPE FUNCTION_NAME(ARGUMENT_TYPE ARGUMENT){ (Line 5) users must

specify data types of functions, a function name, argument types, and arguments.

• return RETURN VALUE; is required if function output is desired.

As before, this process compiles the C++ code into shared library, and creates an R function

(with the same name as the C++ function) that calls the shared library (Example 9.10). In R

Markdown, one can check and debug this process by calling R to run this function from within

the chunk containing the associated C++ script, by using the subsequent code form:

1 /*** R
2 FUNCTION_NAME
3 */

https://colinfay.me/writing-r-extensions/the-r-api-entry-points-for-c-code.html
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where FUNCTION_NAME is the name of the resultant R function.

Example 9.11.

RStudio provides an IDE for C++ scripts. Further, a C++ file obtained using File>New File>C++

contains an example Rcpp-formatted C++ example function, named timesTwo, that multiplies

some number by two:

1 #include <Rcpp.h>
2 using namespace Rcpp;
3

4 // [[Rcpp::export]]
5 NumericVector timesTwo(NumericVector x) {
6 return x * 2;
7 }

Note use of the Rcpp type NumericVector to define function output and values for the argu-

ment, x (Line 5).

Running the code above compiles timesTwo into a shared library, and creates an R function

(with the same name) in the global environment. This function loads the shared library for

use in R.

timesTwo(5)

[1] 10

�

Example 9.12.

As a series of biological examples, we will create C++ functions (using Rcpp tools) for mea-

suring the diversity of ecological communities. Below is a function for calculating relative

abundances of species in a community (individual species abundance divided by the sum of

species abundances).

1 #include <Rcpp.h>
2 using namespace Rcpp;
3

4 // [[Rcpp::export]]
5 NumericVector relAbund(NumericVector x) {
6 int n = x.length();
7 double total = 0;
8 for(int i = 0; i < n; ++i) {
9 total += x[i];

10 }
11 NumericVector rel = x/total;
12 return rel;
13 }
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The function relAbund is a mixture of standard C++ code and calls to C++ classes and proce-

dures from Rcpp. In particular,

• On Lines 1 and 2, I bring in the Rcpp.h header file, and load the Rcpp namespace.

• On Line 4, I include the comment, // [[Rcpp::export]] to promptR to recognize code

below the line.

• On Line 6, I specify the data types of the function output, NumericVector, the function
name, the data type for the argument NumericVector, and the argument itself, x.

• Lines 7-8 are preliminary steps for the loop codified on Lines 9-11. On Line 7, an integer

object n is created by find the number of observation in x. This is done with the Rcpp

Vectormember function length() (Table 9.4) with the call x.length().
• Lines 9-11 comprise a standard C/C++ looping approach for calculating total abundance

(the sum of x). The useful operator += adds the right operand to the left operand and

assign the result to the left operand.

• On Lines 12-13 relative abundance are calculated and the resulting NumericVector is
returned.

Recall (Example 6.17) that the dataset vegan::varespec describes the abundance of vascular
plants, mosses, and lichen species for sites in a Scandinavian taiga/tundra ecosystem. Here I

run the function for the site represented in row 1 (site 18).

library(vegan)
data(varespec)

relAbund(as.vector(varespec[1,], "double"))

[1] 0.00616592 0.12477578 0.00000000 0.00000000 0.19955157 0.00078475
[7] 0.00000000 0.00000000 0.01793722 0.02320628 0.00000000 0.01816143
[13] 0.00000000 0.00000000 0.05235426 0.00022422 0.00145740 0.00000000
[19] 0.00145740 0.00134529 0.00000000 0.24360987 0.24069507 0.03923767
[25] 0.00336323 0.00201794 0.00257848 0.00280269 0.00280269 0.00257848
[31] 0.00000000 0.00000000 0.00089686 0.00022422 0.00022422 0.00000000
[37] 0.00134529 0.00022422 0.00695067 0.00022422 0.00000000 0.00000000
[43] 0.00280269 0.00000000

I ensure that the C++ shared library relAbund views varespec[,1] as double precision by

specifying mode = "double" in as.vector().

Recall (Example 8.21) that species relative abundances are used in calculating measures of 𝛼-
diversity. The code below calculates Simpson diversity (Eq. (8.4)) from a vector of abundance

data.

1 #include <Rcpp.h>
2 #include <cmath>
3 using namespace Rcpp;
4

5 // [[Rcpp::export]]
6 double simpson(NumericVector x) {
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7 NumericVector y = na_omit(x);
8 double total = sum(y);
9 NumericVector relsq = pow(y/total, 2);

10 return 1 - sum(relsq);
11 }

Note that on Line 7, I have dramatically simplified the calculation of relative abundance by

replacing the for loop in relAbundwith the R-like Vector function Rcpp::sum() (Table 9.5).
Other R-like C++ functions used above include na_omit() (Line 6) Rcpp::pow() and (Line 8).

The former allows handling data with missing values.

simpson(as.vector(varespec[1,], mode = "double"))

[1] 0.82171

�

Example 9.13.

The code below shows how one would run some simple mathematical operation in C++ (see

Table 9.5) that combine C++ scripting at the R command line with formal C++ grammar,

including header files.

1 src <-
2 '
3 #include <Rcpp.h>
4 #include <math.h>
5

6 using namespace Rcpp;
7 // [[Rcpp::export]]
8

9 List math_demo(){
10 double a = sin(3);
11 double b = log(3);
12 double c = log2(3);
13 NumericVector v = {1,2,3};
14 double d = min(v);
15 NumericVector e = log(v);
16 return List::create(Named("a") = a,
17 Named("b") = b,
18 Named("c") = c,
19 Named("d") = d,
20 Named("e") = e);
21 }'
22

23 sourceCpp(code = src)
24 math_demo()
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$a
[1] 0.14112

$b
[1] 1.0986

$c
[1] 1.585

$d
[1] 1

$e
[1] 0.00000 0.69315 1.09861

�

• The entire C++ script (Lines 2-21) is written into a character string, and assigned the

name src.
• The first lines of C++ code include calls to both the Rcpp.h and math.h header

files (Lines 3-4), application of the Rcpp namespace (Line 6), and designation of //
[[Rcpp::export]] (Line 7).

• Lines 9-21 codify the C++ function math_demo. The function is argumentless (it is meant

to demonstratemathematics using object generated in the function itself) andwill return

an Rcpp List (Line 9).
• Lines 10-12 are simple scalar operations using math.h functions.
• Lines 13-15 use Rcpp Vector approaches.
• A List containing the generated objects, a, b, c, d, and e is built and return on Lines

16-20.

9.3.1.6 Accessing/Manipulating Data Types Components

Rcpp data type objects can generally be subset using (), [], or with member functions.

Both () and [] can be used with Rccp::NumericVector, Rcpp::IntegerVector and

CharacterVector types. Rcpp::Dataframe objects require [], whereas Rcpp::Matrix,
require () for subsetting.

Example 9.14.
Here is a long-windedC++ function that demonstratesRcpp subsettingusingRcpp::NumericVector
objects, an Rcpp::NumericMatrix object, and an Rcpp::Dataframe object.

1 #include <Rcpp.h>
2 using namespace Rcpp;
3 // [[Rcpp::export]]
4 List subsets(){
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5 // Create Vectors
6 NumericVector nv = {10, 20, 30, 40, 50, 60};
7 nv.names() = CharacterVector({"A","B","C","D","E","F"});
8 NumericVector nv2 = nv + 1;
9 NumericVector nv3 = nv + nv2; // Rcpp allow elementwise Vector operations

10 // Create Matrix
11 NumericMatrix nm(2, 3, nv.begin());
12 // Create Dataframe
13 DataFrame df = DataFrame::create(Named("V2") = nv2, Named("V3") = nv3);
14 // Indexes
15 NumericVector id1 = {1,3};
16 CharacterVector id2 = {"A","D","E"};
17 LogicalVector id3 = {false, true, true, true, false, true};
18 // Vector subsets based on indexes
19 int x1 = nv[0];
20 int x2 = nv["C"];
21 NumericVector x3 = nv[id1];
22 NumericVector x4 = nv[id2];
23 NumericVector x5 = nv[id3];
24 // Matrix subsets
25 double x6 = nm(0 , 1); // Row 0 (first row) and column 1 (2nd column)
26 NumericVector x7 = nm(1 , _ ); // Row 1 (2nd row)
27 NumericVector x8 = nm( _ , 0); // Column 0 (1st column)
28 NumericVector x9 = nm.column(0); // Column 0 (1st column)
29 //Dataframe subsets
30 NumericVector x10 = df[0];
31 NumericVector x11 = df["V3"];
32

33 return List::create(Named("Result1") = x1, Named("Result2") = x2,
34 Named("Result3") = x3, Named("Result4") = x4,
35 Named("Result5") = x5, Named("Result6") = x6,
36 Named("Result7") = x7, Named("Result8") = x8,
37 Named("Result9") = x9, Named("Result10") = x10,
38 Named("Result11") = x11);
39 }

subsets()

$Result1
[1] 10

$Result2
[1] 30

$Result3
B D
20 40
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$Result4
A D E
10 40 50

$Result5
B C D F
20 30 40 60

$Result6
[1] 30

$Result7
[1] 20 40 60

$Result8
[1] 10 20

$Result9
[1] 10 20

$Result10
[1] 11 21 31 41 51 61

$Result11
[1] 21 41 61 81 101 121

• As before, I call the Rcpp.h header file, apply the Rcpp namespace, and designate the

attribute // [[Rcpp::export]] (Lines 1-3).
• On Line 4, the C++ function subsets is defined to have List output. No arguments are

defined because the goal is to demonstrate Rcpp data type subsetting and manipulation,

using only objects created within the function.

• On Lines 6-9, I create three NumericVector objects. The latter two are on elementwise

transformations facilitated by Rcpp sugar operators.

• On Line 11, I create a NumericMatrix filled with elements from the Vector nv, using the
Matrix deque member function begin(). Note that Rcppmatrices are built by column,

given a vector input.

• On Line 13, I create a two column Dataframe comprised of the Vector objects nv2 and
nv3. using the Matrix deque member function begin().

• On Line 15-17, three Vector objects that will be used for subsequent subsetting are

created.

• On Lines 19-23, the objects x1, x2, x3, x4 and x5 are created by subsetting the Vector,
nv.

• On Lines 25-28, the objects x6, x7, x8, and x9 are created by subsetting the Matrix, nm.
• On Lines 30-31, the objects x10 and x11 are created by subsetting the Dataframe, df.
• On Lines 33-38, the subset objects are assembled into a List and are returned by the

function.
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Example 9.15.

We now know enough to extend our scalar function for Simpson’s diversity (Example 9.12) to a

function that can handle matrices –the conventional format for biological community datasets.

1 #include <Rcpp.h>
2 using namespace Rcpp;
3 // [[Rcpp::export]]
4 NumericVector simpson(NumericMatrix x) {
5 CharacterVector rn = rownames(x);
6 NumericVector out = x.nrow();
7 out.names() = rn;
8 int n = out.size();
9

10 for(int i = 0; i < n; ++i) {
11 NumericVector temp = na_omit(x(i , _ ));
12 double total = sum(temp);
13 NumericVector relsq = pow(temp/total, 2);
14 out[i] = 1 - sum(relsq);
15 }
16

17 return out;
18 }

• As in previous examples, I first call the Rcpp.h header file, apply the Rcpp namespace,

and define the // [[Rcpp::export]] compiler attribute (Lines 1-3).

• The function output will be a NumericVector (of Simpson’s diversities of sites) and will

require a NumericMatrix for its argument x, with sites in rows and species in columns

(Line 4).

• Lines 5-8 generate objects (out and n) that will be used in a subsequent loop.

• Lines 10-15 define a loop that populates out with Simpson’s diversities. The code:

NumericVector temp = na_omit(x(i , _ )); creates a NumericVector object,

temp, consisting of non-missing values in the 𝑖th row of x.
• On Line 17 out is returned.

Here we apply our function to the entire vegan::varespec dataset.

simpson(as.matrix(varespec))

18 15 24 27 23 19 22 16 28
0.82171 0.76276 0.78101 0.74414 0.84108 0.81819 0.80310 0.82477 0.55996

13 14 20 25 7 5 6 3 4
0.81828 0.82994 0.84615 0.83991 0.70115 0.56149 0.73888 0.64181 0.78261

2 9 12 10 11 21
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0.55011 0.49614 0.67568 0.50261 0.80463 0.85896

Wesee that ourC++ function ismuch faster than thewidely-used functionvegan::diversity(),
which relies on an R for loop.

m <- matrix(nrow = 10^6, ncol = 10, data = rnorm(10^7) + 10)
system.time(simpson(m))

user system elapsed
0.32 0.05 0.36

system.time(vegan::diversity(m, "simpson"))

user system elapsed
2.23 0.12 2.37

�

9.3.2 The inline package

The inline R package (Sklyar et al., 2025) extends the capacities of Rcpp::evalCpp(),
Rcpp::cppFunction() and Rcpp::sourceCpp() by allowing users to create, compile, and

run functions written in any language supported by R CMD SHLIB, including C, Fortran, C++,
and C-obj, from the R command line.

Example 9.16.

Consider the following example –based on ? inline::cfunction()– of a simple C function

that raises every value in a numeric vector to the third power.

1 library(inline)
2

3 code.cube <- "
4 int i;
5 for (i = 0; i < *n; i++)
6 x[i] = x[i]*x[i]*x[i];
7 "
8 cube.fn <- cfunction(signature(n="integer", x="numeric"), code.cube,
9 language = "C", convention = ".C")

10

11 cube.fn(20, 1:20)

$n
[1] 20

$x
[1] 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744
[15] 3375 4096 4913 5832 6859 8000
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Note that code.cube, is a character string containing C-script (Lines 3-7). The script on Lines

9 and 10 calls inline::cfunction() to compile the string into a C shared library executable

using SHILB. The shared librarywill be called automatically using .C(), allowing cube.fn used
as an R function on Line 9. The object cube.fn has an unusual combination of characteristics.

It is a function of base type closure:

typeof(cube.fn)

[1] "closure"

However, it is also S4,

isS4(cube.fn)

[1] TRUE

with the following slots:

slotNames(cube.fn)

[1] ".Data" "code"

The code slot can be obtained using the function inline::code()

code(cube.fn)

1: #include <R.h>
2:
3:
4: void fileb02843d186a ( int * n, double * x ) {
5:
6: int i;
7: for (i = 0; i < *n; i++)
8: x[i] = x[i]*x[i]*x[i];
9:

10: }

Note that the text string has been converted to a C void function, as required by SHLIB. The
header call #include <R.h> provides a built-in R API for C code.

The .Data slot contains R code that is run by interpreter when cube.fn() is called. Note that
the function uses .Primitive() to call the appropriate shared library by way of its object

address/pointer.

cube.fn@.Data

function (n, x)
.Primitive(".C")(<pointer: 0x00007ffc9aa61380>, n = as.integer(n),
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x = as.double(x))
<environment: 0x0000012da423be38>

�

9.4 SQL and Databases

Biological databases have grown exponentially in size and number (Sima et al., 2019). Because

of this trend, biological databases are often housed inweb-accessiblewarehouses including the

National Center for Biotechnology Information (NCBI), dataBase for Gene Expression Evolution

(Bgee), and the European life-sciences infrastructure for biological information (ELIXIR). The

Posit website provides a nice resource for working with databases in R.

Databases are often assembled in a Database Management System (DBMS) format. A DBMS

will contain one or more rectangular row/column storage units called tables. Rows in tables

are called records and columns are called fields or attributes.

Many DBMS formats have evolved based on the Structured Query Language (SQL). Although

SQL is an American National Standards Institute (ANSI) and International Organization for

Standardization (ISO) standard, there are many variants of SQL, and software for managing

these languages is often proprietary (e.g., Oracle, Microsoft SQL Server) and potentially expen-

sive. Despite this variety, SQL dialects generally use the same basic SQL commands (Table 9.7),

and processes. For example, as a general rule, SQL table fields can be accessed with a period

operator. That is, a column, bar, in table foo is specified as foo.bar. SQL guidance can be

found at a large number of websites, including the developer site W3.

Table 9.7: Important SQL commands. Out of convention, SQL commands here are shown in

upper-case. SQL keywords, however, are not case sensitive. That is, select is the same as

SELECT.
Command Meaning

SELECT Extracts data from a database

FROM Used with SELECT. A clause identifying a database

UPDATE Updates data in a database

DELETE Deletes data from a database

CREATE TABLE Creates a new table

WHERE Filters records from a table

AND Filters records based on more than one condition

OR Filters records based on more than one condition

BETWEEN Selects values within a given range

9.4.1 DBI

The R package DBI (R Special Interest Group on Databases (R-SIG-DB) et al., 2024; James,

2009) currently allows communicationwith 30 SQL-drivenDBMS formats. Each supportedDBI

https://www.ncbi.nlm.nih.gov/
https://bgee.org/
https://elixir-europe.org/platforms/data
https://solutions.posit.co/connections/db/
https://www.oracle.com/database/sqldeveloper/
https://www.trustedtechteam.com/products/microsoft-sql-server-2022-standard-download-license?cq_plac=&cq_net=g&cq_pos=&cq_med=&cq_plt=gp&gc_id=8657288349&h_ad_id=695036285236&gad_source=1
https://www.w3schools.com/sql/sql_intro.asp
https://github.com/r-dbi/backends#readme
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DBMS uses its own R package. For instance, the SQLite DBMS is interfaced with the package

RSQLite (which will be installed with DBI), and the MySQL DBMS can be interfaced using the

package RMySQL. The RMariaDB package can be used to interface either MySQL or the DBMS

MariaDB. Opening a DBMS connection will constrain users to the SQL nuances of the selected

DBMS. We will concentrate on the non-proprietary DBMS SQLite here.

library(DBI)

library(RSQLite)

Example 9.17.

As a first example, we will create a database using “internal” R dataframes. First we establish

a SQLite DBMS connection using dbConnect().

con <- dbConnect(SQLite(), ":memory:")
con

<SQLiteConnection>
Path: :memory:
Extensions: TRUE

Unlike many other DBMS frameworks that may require a username, password, host, port, and

other information, SQLite only requires a path to the database25. The argument ":memory:"
specifies a special path that results in an “in-memory” database.

Notably, the con database is an S4 object:

isS4(con)

[1] TRUE

Hereweappend theasbio::world.emissiondataframe to thedatabaseusingdbWriteTable().

library(asbio)
data(world.emissions)
dbWriteTable(con, "emissions", world.emissions)

We see that the table (renamed emissions) now exists in the database.

dbListTables(con)

[1] "emissions"

Below we use SQL script (within the R function DBI::dbSendQuery()) to access information

25Use of an MySQL DBMS might require something like: `Mycon <- dbConnect(RMySQL::MySQL(), host =
"your_host", user = "your_user", password = "your_password", dbname = "your_database")`.

https://www.sqlite.org/
https://www.mysql.com/
https://mariadb.com/kb/en/rmariadb/
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from the database table emissions. In particular –using the commands SELECT, FROM, WHERE,
AND, and BETWEEN– I query the columns coal_co2 and gas_co2, with respect to the United
States, for the years 2016 to 2019.

1 us <- dbSendQuery(con, "SELECT coal_co2, gas_co2
2 FROM emissions
3 WHERE country = 'United States'
4 AND year BETWEEN 2016 AND 2019")

To access all columns from emissions, I could have used the SQL command: "SELECT * FROM
emissions.

Here I fetch the query result using dbFetch():

us.fetch <- dbFetch(us)
us.fetch

coal_co2 gas_co2
1 1378.2 1509.0
2 1337.5 1491.8
3 1282.1 1653.0
4 1094.7 1706.9

The fetched result is a dataframe.

class(us.fetch)

[1] "data.frame"

One should clear queries using DBI::dbClearResult(). This will free all computational

resources (local and remote) associated with a query result.

dbClearResult(us)

Databases can contain multiple tables. Here I append the asbio::C.isotope dataframe to

the database:

data(C.isotope)
dbWriteTable(con, "isotopes", C.isotope)

There are now two tables in the database, although they are not relational.

dbListTables(con)

[1] "emissions" "isotopes"

When finished accessing a DBMS, one should always close the DBMS connection.
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dbDisconnect(con)

�

In R Markdown one can use the SQL variant of the chosen DBMS directly, by specifying

```{sql, connection = con}``` when initiating code chunks, where con is the name

of the database connection (see Section 9.1.3). This approach is often required for complex

operations.

Example 9.18.

Reconsidering Example 9.17 we have:

con <- dbConnect(SQLite(), ":memory:")
dbWriteTable(con, "emissions", world.emissions)

Here I directly specify an SQL query (in SQL).

1 SELECT coal_co2, gas_co2
2 FROM emissions
3 WHERE country = 'United States'
4 AND year BETWEEN 2016 AND 2019;

coal_co2 gas_co2

1378.2 1509.0

1337.5 1491.8

1282.1 1653.0

1094.7 1706.9

Reflecting the requirements of several DBMS variants, I end SQL the statements above with a

semicolon, ;.

dbDisconnect(con)

�

9.4.2 Relational DBMS

Thus far, the justification for an interfaced DBMS may seem vague, since similar data manage-

ment results could be obtained from R lists.

The advantages of creating a DBMS become clearer when considering a relational DBMS

(RDBMS). An RDBMS allows the straightforward linking of multiple database tables via a

common value identifier stored in the tables (Fig 9.2).
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Figure 9.2: A relational database from the gene expression database Bgee. Several tables are

linked via the identifier SpeciesID. Figure taken from Sima et al. (2019).

Example 9.19.

In this example we will impart relational characteristics to a database based on two R

dataframes, asbio::Rabino_CO2 and asbio::Rabino_del13C, obtained from (Rubino et al.,

2013). The datasets record CO2 and 𝛿13C levels from Law Dome and South Pole, Antarctica for

a 1000 year timespan. Exact effective date records, precision, and measurement depths all

vary for the entries (see Example 7.5), prompting the creation of two separate datasets.

First, I create mean effective date records to eventually provide a single-entry label field for

each dataset, based on the effective.age of samples.

data(Rabino_CO2)
data(Rabino_del13C)

library(tidyverse)
AvgCO2df <- Rabino_CO2 |>

group_by(effective.age) |>
summarise(AvgDdepth = mean(depth),

AvgCO2 = mean(CO2),
AvgUncertainty = mean(uncertainty))

Avg13Cdf <- Rabino_del13C |>
group_by(effective.age) |>
summarise(AvgDepth = mean(depth),

Avgd13C = mean(d13C.CO2),

https://bgee.org/
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AvgUncertainty = mean(uncertainty))

names(Avg13Cdf)[1] <- names(AvgCO2df)[1] <- "EffectiveAge"
AvgCO2df$EffectiveAge <- as.integer(unlist(AvgCO2df[,1]))
Avg13Cdf$EffectiveAge <- as.integer(unlist(Avg13Cdf[,1]))

The resulting summary dataframes, AvgCO2df and AvgC13df, do not contain measures from

the same effective dates. Specifically, 114 (out of 189) AvgCO2df effective age records do not
occur in AvgC13df.

length(AvgCO2df$EffectiveAge) -
length(which(AvgCO2df$EffectiveAge %in% Avg13Cdf$EffectiveAge))

[1] 114

And 10 (out of 85) AvgC13df effective age records do not occur in AvgCO2df.

length(Avg13Cdf$EffectiveAge) -
length(which(Avg13Cdf$EffectiveAge %in% AvgCO2df$EffectiveAge))

[1] 10

Nonetheless, we can easily join the datasets in a DBMS, and use their effective ages, to simulta-

neously query them.

We first request a SQLite database connection.

con <- dbConnect(SQLite(), ":memory:")

We then add AvgCO2df and AvgC13df to the database as tables.

dbWriteTable(con, "CO2", AvgCO2df)
dbWriteTable(con, "d13C", Avg13Cdf)

There are several database joins we can specify using SQL, including LEFT JOIN and

RIGHT_JOIN. Assume that we have two tables in a database , A and B.

If I request A LEFT JOIN B, then the result set will include:

• Records in A and B with corresponding labels.
• Records (if any) in A without corresponding labels in B. In this case, B entries are given
NULL values.

Conversely, if I request A RIGHT JOIN B, then the result set will include:

• Records in B and A with corresponding labels.
• Records (if any) in B without corresponding labels in A. In this case, A entries are given
NULL values.
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1 SELECT AvgCO2, d13C.Avgd13C, CO2.EffectiveAge
2 FROM CO2 LEFT JOIN d13C
3 ON d13C.EffectiveAge = CO2.EffectiveAge
4 WHERE CO2.EffectiveAge > 1990;

AvgCO2 Avgd13C EffectiveAge

352.22 -7.8410 1991

353.73 -7.8820 1992

353.94 -7.8883 1993

357.11 NA 1994

359.65 NA 1996

361.78 -8.0600 1998

368.02 -8.0695 2001

In the SQL code above, I specify a LEFT JOIN.

• On Line 1, I specify the fields whose data I want to consider jointly, AvgCO2,
d13C.Avgd13C, and the reference field I wish to use, CO2.EffectiveAge, i.e., the
EffectiveAge field in the CO2 table.

• On Line 2, I specify the join: CO2 LEFT JOIN d13C.
• On Line 3, I identify the fields used to join the tables.

• On Line 4, I limit the printed results to CO2.EffectiveAge values greater than 1990.

Note that in the output above there are two effective ages, 1994 and 1996, with CO2 records

but no 𝛿13C records.

1 SELECT AvgCO2, d13C.Avgd13C, CO2.EffectiveAge
2 FROM CO2 RIGHT JOIN d13C
3 ON d13C.EffectiveAge = CO2.EffectiveAge
4 WHERE CO2.EffectiveAge > 1990;

AvgCO2 Avgd13C EffectiveAge

352.22 -7.8410 1991

353.73 -7.8820 1992

353.94 -7.8883 1993

361.78 -8.0600 1998

368.02 -8.0695 2001

The RIGHT JOIN SQL statement above is identical to the previous statement except for the Line

2 command: CO2 RIGHT JOIN d13C. In the output, complete 𝛿13C records for the requested

effective age range are returned (note that ages 1994 and 1996 are omitted). While not required

by the query, corresponding records for CO2 also exist, and are reported.
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dbDisconnect(con)

�

9.4.3 Creating an SQLite database

Thus far we have used package dataframes to populate an SQLite database connection. A more

realistic application would be assembling an SQLite database from related but intentionally

separated data files.

Example 9.20.

�

9.5 Python

Python, whose image logo is shown in Fig 9.3, is similar to R in several respects. Python was

formally introduced in the early 90s, is an open source OOP language that is rapidly gaining

popularity, and its source code is usually evaluated in an on-the-fly manner. That is Python,

like R, is generally used as an interpreted language. Like R, comments in Python are made

using the pound metacharacter, #26, and many function calls have similar syntax.

Figure 9.3: The symbol for Python, a high-level, general-purpose, programming language.

There are, however, several fundamental differences between Python and R. These include the

fact that while white spaces in R code (including tabs) simply reflect coding style preferences

–for example, to increase code clarity– Python indentations denote code blocks27. That is,

Python indentations serve the same purpose as R curly braces. Another important difference

is that R object names can contain a . (dot), whereas in Python . means: “attribute in

26A Python comment spanning multiple lines can be implemented by enclosing the comment in triple quotes

(""" or ''').
27In computer science this is called significant indentation, or the off-side rule.
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a namespace.” Thus, in Python the period operator . serves the same role as $ in R lists,

dataframes and environments (Sections 3.1.4, 8.8.1.1). Recall that the . operator is used in a

similar way in SQL language queries of database tables (Section 9.4). Python also uses member

functions (Section 9.3.1.2) for class methods instead of generic function calls like R. IN Python,

a method for an object of a specific class is specified using the period operator. Useful guidance

for converting R code to analogous Python code can be found here.

Python can be downloaded for free from (https://www.python.org/downloads/), and can be

activated from the Windows shells using the commands py or python, and activated from Mac

and Unix/Linux shells using the command python. General guidance for the Python language

can be found at (https://docs.python.org/) and many other sources including these books.

Below I call Python from the Windows PowerShell command line.

PS C:\>py
Python 3.13.7 (tags/v3.13.7:bcee1c3, Aug 14 2025, 14:15:11) [MSC v.1944 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Note that the standard command line prompt for the Python shell is >>>. We can exit Python

from the command line by typing quit().

9.5.1 reticulate

Module(numpy)

Because our primary interest is interfacing Python and R, and not Python itself, we will use R

as our base of operations. This will require the R package reticulate (Ushey et al., 2023).

# install.packages("reticulate")
library(reticulate)

RStudio (via reticulate) can be used as an IDE for Python28. In this capacity RStudio will:

• Generate a Python-specific environment (to provide separate settings for Python and R

objects).

• Call separate R and Python environments, depending on which language is currently

used in a chunk. Python code can be run directly in RMarkdown by defining python
(instead of r) as the first option in an RMarkdown chunk (Section 9.1.3).

28Many IDEs have been developed specifically for Python, although quite a few are proprietary. Free IDEs

include a primitive Python-bundled interface called IDLE (IDLE can be opened from the Windows command

line using: Path to python.exe\python.exe -m idlelib), Jupyter Notebook, a web-based IDE, with many

useful features, including support for R and Markdown-driven workflow documentation, Spyder, a widely used

IDE, (e.g., Pine (2019)), Python Toolkit, which hasn’t been updated for a while, and pycharm (which also has a

commercial version).

https://www.mit.edu/~amidi/teaching/data-science-tools/conversion-guide/r-python-data-manipulation/
https://www.python.org/downloads/
https://docs.python.org/
https://wiki.python.org/moin/PythonBooks
https://docs.python.org/3/library/idle.html
https://jupyter.org/
https://www.spyder-ide.org/
https://pythontoolkit.sourceforge.net/
https://www.jetbrains.com/pycharm/
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9.5.2 Important Considerations for IDEs and APIs

Python packages are currently installed from one of two package repositories: the Python Pack-

age Index (PyPI) orAnaconda. The Python Installer Package (pip) is designed to install packages

from PyPI (see Section 9.5.3). A repository manager named conda is used in conjunction with

Anaconda, and its stripped-down repositoryMiniconda.

Using Python can be a headache if: 1) different versions of Python exist on your machine, and

it is unclear which versions (if any) have access to necessary repositories29, and/or 2) Python

installations and packages are accessible under one manager (e.g., pip), but not another (e.g.,

conda). This is further complicated by the fact that Python APIs (like reticulate) or IDEs (like

Spyder) may come with their own repository frameworks and default versions of Python.

With this mind, I can specify a path to a specific Python executable to be used in an

R/retuculate session with reticulate::use_python(), and specify a repository path

(and a path a particular Python executable) with reticulate::use_condaenv() and

reticulate::use_miniconda(). The code below specifies use of my (external to

reticulate) Miniconda environment as a package repository and Python executable path.

use_condaenv("C:/Users/ahoken/miniconda3/")

The version of Python used by reticulate can be accessed with Sys.which(), which finds

full paths to program executables.

Sys.which("python")

python
"C:\\Users\\ahoken\\MINICO~1\\python.exe"

More details concerning my Python configuration for reticulate are revealed with

reticulate::py_config():

reticulate::py_config()

python: C:/Users/ahoken/miniconda3/python.exe
libpython: C:/Users/ahoken/miniconda3/python313.dll
pythonhome: C:/Users/ahoken/miniconda3
version: 3.13.5 | packaged by Anaconda, Inc. | (main, Jun 12 2025, 16:37:03) [MSC v.1929 64 bit (AMD64)]
Architecture: 64bit
numpy: C:/Users/ahoken/miniconda3/Lib/site-packages/numpy
numpy_version: 2.3.1
numpy: C:\Users\ahoken\MINICO~1\Lib\site-packages\numpy

NOTE: Python version was forced by use_python() function

A Python command line interface can be called directly in R using:

reticulate::repl_python()

29This is also important because specific versions of Python may dramatically affect the usability of basic

Python functions.

https://pypi.org/
https://anaconda.org
https://www.anaconda.com/docs/getting-started/miniconda/main
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Python can be closed from the resulting interface (returning one to R) by typing:

exit

Example 9.21.

The following are Python operations, run directly from RStudio.

2 + 2

4

The Python assignment operator is =.

x = 2
x + x

4

Here we see the aforementioned importance of indentation.

if x < 0:
print("negative")

else:
print("positive")

positive

Lack of an indented “block” following ifwill produce an error. Indentations in code can be

made flexibly (e.g., one space, two space, tab, etc.) but they should be used consistently.

�

9.5.3 Packages

Like R, Python consists of a core language, a set of built-in functions, modules, and libraries

(i.e., the Python standard library), and a vast collection (> 200, 000) of supplemental libraries.

Imported libraries are extremely important in Python because its distributed version has

limited functional capabilities (compared to R). A number of important Python supplemental

libraries, each of which contain multiple packages, are shown in Table 9.11.

We can install Python packages and libraries using the pip package manager for Python or

conda (Section 9.5.2). Installation only needs to occur once on a workstation (similar to

install.packages() in R). Following installation, one can load a package for a particular

work session using the Python function import (analogous to library() in R)30.

30Loading Python libraries (aside from numpy) in reticulatewill produce an error if one specifies a Python

location in use_python() that does not contain the installed libraries.

https://docs.python.org/3/library/index.html
https://www.activestate.com/blog/top-10-must-have-python-packages/
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Table 9.11: Important supplemental Python libraries. For more information use hyperlinks.

Library Purpose

sumpy Fundamental package for scientific computing

scipy Mathematical functions and routines

matplotlib 2- and 3-dimensional plots

pandas Data manipulation and analysis

sympy Symbolic mathematics

bokeh Interactive data visualizations

Installation of a Python package, foo, with reticulate, can be accomplished using the function

reticulate::py_install (in R)31.

py_install("foo")

Example 9.22.

I wish to install the ecologits library, and its dependencies in the openAI library. This requires

use of pip, via conda. Hence, I use the command:

py_install("ecologits[openai]", method = "conda", pip = TRUE) # Run in R

To load the ecologits library I use the Python function import():

import ecologits

�

9.5.4 Functions in Packages

Functions within Python packages are obtained using a package.function syntax. Here I

import numpy and run the function pi (which is contained in numpy).

import numpy
numpy.pi

3.141592653589793

If we are writing a lot of numpy functions, Python will allow you to define a simplified library

prefix. For instance, here I created a shortcut for numpy called np and use this shortcut to

access the numpy functions pi() and sin().

31This approach generally works well. If problems occur loading libraries with reticulate::py_install
one can download libraries from the command line using using pip or conda.

https://docs.scipy.org/doc/numpy/reference/index.html
https://docs.scipy.org/doc/scipy/reference
https//matplotlib.sourceforge.net
https://pandas.pydata.org
https://www.sympy.org/en/index.html
https://docs.bokeh.org/en/latest/index.html
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import numpy as np
np.sin(20 * np.pi/180) # sin(20 degrees)

np.float64(0.3420201433256687)

Use of the command from numpy import *would cause names of functions from NumPy to

overwrite functions with the same name from other packages. That is, we could run numpy.pi
simply using pi.

Example 9.23.

Here we import the package pyplot from the librarymatplotlib, rename the package plt, and
create a plot (Fig 9.4) using the function pyplot.plot() (as plt.plot()) by calling:

1 import matplotlib.pyplot as plt
2 plt.plot(range(10), 'bo')

Figure 9.4: Creating a Python plot using R.

In Line 2, the command range(10) creates a sequence of integers from zero to ten. This

is used as the first argument of plt.plot(), which specifies the plot 𝑥-coordinates. If 𝑦
coordinates are not specified in the second argument, 𝑥-coordinates will be reused as 𝑦 coor-
dinates. The command 'bo' places blue filled circles at 𝑥,𝑦 coordinates. Documentation for

matplotlib.pyplot.plot() can be found at the matplotlib.org website.

�

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
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9.5.5 Data Types

There are four major built-in dataset storage classes in Python: lists, tuples, sets, and dictio-

naries (Table 9.12).

Table 9.12: The four basic Python dataset storage classes.

Storage type Example Entry characteristics

List ["hot","cold"] Changeable, Duplicates OK

Tuple ("hot","cold") Unchangeable, Duplicates OK

Set {"hot","cold"} Unchangeable, Duplicates not OK

Dictionary {"temp":["hot", cold"]} Changeable, Duplicates not OK

All four classes track element order and can be used to simultaneously store different types of

data, e.g., character string and numbers.

We can make a Python list, which can contain both text and numeric data, using square

brackets or the function list().

a = [20, 7, "Hi", 7, "end"]

Classes of Python objects can be identified with the Python function type().

type(a)

<class 'list'>

An empty list can be specified as []

empty = []
empty

[]

Like R, we can index list elements using square brackets. Importantly, like C-alike languages,

indices start at 0. That is, a[0] refers to the first element of the list a.

a[0]

20

And the third element would be:

a[2]

'Hi'

As with R, square brackets can also be used to reassign list values
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a[3] = 10
a

[20, 7, 'Hi', 10, 'end']

We can use the function append() to append entries to the end of a list. For instance, to
append the number 9 to the object a in the previous example, I would type:

a.append(9)
a

[20, 7, 'Hi', 10, 'end', 9]

The function appendleft() can be used to efficiently append entries to the beginning of an

object of class deque (from the Python collections package). The function deque() can be used

to convert a list into a deque (double ended queue).

from collections import deque

a = deque(a)
type(a)

<class 'collections.deque'>

a.appendleft(0)
a

deque([0, 20, 7, 'Hi', 10, 'end', 9])

Unlike a Python list, a data object called a tuple, which is delineated using parentheses,

contains elements that cannot be changed:

b = (1,2,3,4,5)
b[0]

1

b[0] = 10 # produces error

Multidimensional numerical arrays, including matrices, can be created using functions from

numpy.

Example 9.24.

Here we define:

𝐵 = [1 4 −5
9 −7.2 4 ]
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B = np.array([[1, 4, -5], [9, -7.2, 4]])
B

array([[ 1. , 4. , -5. ],
[ 9. , -7.2, 4. ]])

We see that B is an object of class numpy.ndarray (meaning numpy n-dimensional array).

type(B)

<class 'numpy.ndarray'>

Mathematical matrix operations can be easily applied to numpy.ndarray objects. Here I find
𝐵 − 5

B - 5

array([[ -4. , -1. , -10. ],
[ 4. , -12.2, -1. ]])

Extensive linear algebra tools are contained in the libraries numpy and scipy.

�

Unlike a list, a numpy arraywill allow Boolean indexing and vectorized operations.

9.5.6 Member Functions and Other Attributes

Like C++, Python uses a member function approach to create and call methods for particular

classes. As with C++, a member function foo, for a class underlying an object bar, would be

run as: bar.foo(). Python classes often have special member functions calledmagic methods

or dunder (short for double underline) methods . These would be called using the syntax:

bar.__foo__(). Python also uses instance variables which are automatically stored as a data

attribute of a particular class, but do not require a methods call. An instance variable foo for
an object barwould be called using: bar.foo. Available methods and instance variables for

an object bar can be listed using dir(bar), or ‘bar.__dir__(), assuming the object has a

.__dir__() dunder method.

Example 9.25.

Consider the numpy.ndarray object B from Example 9.24. There are a large number of object

attributes.

dir(B)

['T', '__abs__', '__add__', '__and__', '__array__', '__array_finalize__', '__array_function__', '__array_interface__', '__array_namespace__', '__array_priority__', '__array_struct__', '__array_ufunc__', '__array_wrap__', '__bool__', '__buffer__', '__class__', '__class_getitem__', '__complex__', '__contains__', '__copy__', '__deepcopy__', '__delattr__', '__delitem__', '__dir__', '__divmod__', '__dlpack__', '__dlpack_device__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__iadd__', '__iand__', '__ifloordiv__', '__ilshift__', '__imatmul__', '__imod__', '__imul__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__ior__', '__ipow__', '__irshift__', '__isub__', '__iter__', '__itruediv__', '__ixor__', '__le__', '__len__', '__lshift__', '__lt__', '__matmul__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmatmul__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__xor__', 'all', 'any', 'argmax', 'argmin', 'argpartition', 'argsort', 'astype', 'base', 'byteswap', 'choose', 'clip', 'compress', 'conj', 'conjugate', 'copy', 'ctypes', 'cumprod', 'cumsum', 'data', 'device', 'diagonal', 'dot', 'dtype', 'dump', 'dumps', 'fill', 'flags', 'flat', 'flatten', 'getfield', 'imag', 'item', 'itemset', 'itemsize', 'mT', 'max', 'mean', 'min', 'nbytes', 'ndim', 'newbyteorder', 'nonzero', 'partition', 'prod', 'ptp', 'put', 'ravel', 'real', 'repeat', 'reshape', 'resize', 'round', 'searchsorted', 'setfield', 'setflags', 'shape', 'size', 'sort', 'squeeze', 'std', 'strides', 'sum', 'swapaxes', 'take', 'to_device', 'tobytes', 'tofile', 'tolist', 'trace', 'transpose', 'var', 'view']

Note that dunder methods are listed first, and conventional member functions and instance

variables are grouped togethor at the end of the dir() output.
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The dunder method .__abs__() prints the elementwise absolute values of the array and

.__len__() gives the number of rows.

B.__abs__()

array([[1. , 4. , 5. ],
[9. , 7.2, 4. ]])

B.__len__()

2

The instance variables for an array include .shape (which reports the number of rows,

columns, etc.) and .sizewhich returns the number of array elements.

B.shape

(2, 3)

B.size

6

One can easily easily obtain the mean and standard deviation of any array using the array
member functions .mean() and .std().

B.mean()

np.float64(0.9666666666666667)

B.std()

np.float64(5.556277730839435)

�

9.5.7 Boolean Operations

Python Boolean operators are very similar to those in R (Table 9.13). As exceptions, to desig-

nate “and” and “or” in Python, one would use the commands and and or, respectively. Addi-
tionally, Python (like C and C++) uses True and False, instead of TRUE and FALSE.

Unlike R and C, && and || are not valid Boolean operators in Python.

Example 9.26.

Consider the following simple examples:

a = 2
b = 5

a == b
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Table 9.13: Python Boolean operators.

Operator Operation To ask: We type:

> > Is x greater than y? x > y
>= ≥ Is x greater than or equal to y? x >= y
< < Is x less than y? x < y
<= ≤ Is x less than or equal to y x <= y
== = Is x equal to y? x == y
!= ≠ Is x not equal to y? x != y
and and Do x and y equal z? x == z and y == z
& and (bitwise) Bitwise comparison of x and y x & y
| or Do x or y equal z? x == z or y == z
|| or (bitwise) Bitwise comparison of x or y x | y

False

a != b

True

b > a

True

a < 4 and b < 4

False

a < 4 or b < 4

True

�

Unlike R, & and | are Python bitwise Boolean operators for “and” and “or”, respectively (Table

9.13). That is, they compare objects by paired bits (see Section 12.3) and, for each bit, return 1
for True and 0 for False.

Example 9.27.

This example will use the functions asbio::dec2bin() and asbio::bin2dec() to translate
between binary {0, 1} and conventional (decimal) representations of numbers. For additional

background see Sections 12.5 and 12.4.

The number 11 can be expressed in binary with four bits: 1011.

asbio::dec2bin(11)

[1] 1011

Whereas the number 14 can be expressed as: 1110.
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asbio::dec2bin(14)

[1] 1110

In a bitwise comparison of the number 11 and 14, the first and third bits are equal (both equal

1) while the second and fourth bits are not equal. Thus, the bitwise Boolean result is 1010.
This turns out to be the binary version of the number 10.

asbio::bin2dec(1010)

[1] 10

This result corresponds to the bitwise comparison of the numbers 11 and 14 in Python, using

&.

11 & 14

10

�

9.5.8 Mathematical Operations

Basic Pythonmathematical operators are generally (but not always) identical toR. For instance,

note that for exponentiation ** is used instead of ^ (Table 9.14). This convention is also used

by several other programming languages, including Fortran. Recallthat * can also +-be used by

Python in non-mathematical contexts, for instance to load all function names from a package

(Section 9.5.4).

Symbolic derivative solutions to functions can be obtained using functions from the library

sympy. Results from the package functions can be printed in LaTeX for pretty mathematics.

py_install("sympy", pip = TRUE) # run in R if sympy hasn't been installed

Example 9.28.

Here we solve:
𝑑
𝑑𝑥

3𝑒−𝑥2

1 from sympy import *
2 x = symbols ('x')
3 fx = 3 * exp(-x ** 2)
4 print(diff(fx))

−6𝑥𝑒−𝑥2
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Table 9.14: Basic Python mathematical functions and operators.

Operation Operator/Function To find We type

addition + 2 + 2 2 + 2
subtraction - 2 − 2 2 - 2
multiplication * 2 × 2 2 * 2
division / 2

3 2/3
modulo % remainder of 5

2 5%2
integer division // 5

2 without remainder 5//2
exponentiation ** 23 2**3√
𝑥 sqrt(x)

√
2 numpy.sqrt(2)

𝑥! factorial(x) 5! numpy.math.factorial(5)
log𝑒 log(x) log𝑒(3) numpy.log(3)
𝑒𝑥 exp(x) 𝑒1 = 2.718282… numpy.exp(1)
𝜋 = 3.141593… pi 𝜋 numpy.pi
∞ inf ∞ float('inf')
−∞ -inf −∞ float('-inf')

In Line 2, x is defined symbolically using the sympy.symbols() function. The variable x is

used as a term in the expression fx in Line 3. The function fx is differentiated in Line 4 using

the function sympy.diff().

�

Integration in Python can be handled with the function quad() in scipy.

Example 9.29.

Here we find:

∫
1

0
3𝑒−𝑥2𝑑𝑥

To perform integration we must install the scipy.integrate library using pip and bring in the

function quad().

from scipy.integrate import quad

We then define the integrand as a Python function using the function def(). That is, def() is
analogous to function() in R.

def f(x):
return 3 * np.exp(-x**2)

We now run quad() on the user function fwith the defined bounds of integration.
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quad(f, 0, 1)

(2.240472398437281, 2.487424042782217e-14)

The first number is the value of the definite integral (in this case, the area under the function f
from 0 to 1). The second is a measure of the absolute error in the numerical approximation.

�

9.5.9 Reading in Data

Data in delimited files, including .csv files, can be read into Python using the numpy function

loadtxt().

Example 9.30.

Assume that we have a comma separated dataset, named ffall.csv, located in the Python

working directory, describing the free fall properties of some object over six seconds, with

columns for observation number, time (in seconds), altitude (in mm) and uncertainty (in mm).

The Python working directory (which need not be the same as the R working directory in

RStudio) can be identified using the function getcwd() from the library os.

import os
os.getcwd()

'C:\\Users\\ahoken\\Documents\\GitHub\\Amalgam'

We can load freefall.csv using:

obs, time, height, error = np.loadtxt("ffall.csv",
delimiter = ",", skiprows = 1, unpack = True)

The first row was skipped (using skiprows = 1) because it contained column names and

those were re-assigned when I brought in the data. Note that, unlike R, columns in the dataset

are automatically attached to the global environment upon loading, and will overwrite objects

with the same name.

height/1000 # height in meters

array([0.18 , 0.182, 0.178, 0.165, 0.16 , 0.148, 0.136, 0.12 , 0.099,
0.083, 0.055, 0.035, 0.005])

File readers in pandas are less clunky (and more similar to R). We can bring in freefall.csv
using the function pandas.read_csv():

py_install("pandas") # Run if pandas is not installed
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import pandas as pd # run in a Python chunk
ffall = pd.read_csv('ffall.csv')
ffall

obs time height error
0 1 0.0 180 3.50
1 2 0.5 182 4.50
2 3 1.0 178 4.00
3 4 1.5 165 5.50
4 5 2.0 160 2.50
5 6 2.5 148 3.00
6 7 3.0 136 2.50
7 8 3.5 120 3.00
8 9 4.0 99 4.00
9 10 4.5 83 2.50
10 11 5.0 55 3.60
11 12 5.5 35 1.75
12 13 6.0 5 0.75

The object ffall is a Pandas DataFrame, which is different in several respects, from an R

dataframe.

type(ffall)

<class 'pandas.core.frame.DataFrame'>

Column arrays in ffall can be called using the syntax: ffall., or by using braces, []. For
instance:

ffall.height

0 180
1 182
2 178
3 165
4 160
5 148
6 136
7 120
8 99
9 83
10 55
11 35
12 5
Name: height, dtype: int64
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ffall["height"]

0 180
1 182
2 178
3 165
4 160
5 148
6 136
7 120
8 99
9 83
10 55
11 35
12 5
Name: height, dtype: int64

�

9.5.10 Data Analysis in both Python and R

In RStudio, R and Python (reticulate) sessions are considered separately. When accessing

Python from R, R data types are automatically converted to their equivalent Python types.

Conversely, when values are returned from Python to R they are converted back to R types. It

is possible, however, to access each from the others’ session.

The reticulate command py allows one to interact with a Python session directly from the R

console. Here I convert the pandas DataFrame ffall into a recognizable R dataframe, within

R.

ffallR <- py$ffall

Which allows me to examine it with R functions.

colMeans(ffallR)

obs time height error
7.0000 3.0000 118.9231 3.1615

On Lines 1 and 2 in the chunk below, I bring in the Python library pandas (from R) with the

function reticulate:import(). The code pd <- import("pandas", convert = FALSE)
is the Python equivalent of: import pandas as pd.

pd <- import("pandas", convert = FALSE)
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As expected, the column names constitute the names attribute of the dataframe ffallR.

names(ffallR)

[1] "obs" "time" "height" "error"

The ffall dataframe, however, has different characteristics when it is loaded as a pandas

DataFrame. Note that in the code below the pandas function read_csv() is accessed using

pd$read_csv() instead of pd.read_csv() because an R chunk is being used.

ffallP <- pd$read_csv("ffall.csv")

The names attribute of the pandas DataFrame ffallP, as perceived by R, contains over 200

entities due the presence of DataFrame attributes (including member functions and instance

variables) see Section 9.5.6. Many of these are provided by the built-in Pythonmodule statistics.

Here are the first 20.

head(names(ffallP), 20)

[1] "abs" "add" "add_prefix" "add_suffix" "agg"
[6] "aggregate" "align" "all" "any" "apply"
[11] "applymap" "asfreq" "asof" "assign" "astype"
[16] "at" "at_time" "attrs" "axes" "backfill"

I can call these attributes using the $ operator, in the style of RC and R6 methods (Section

8.7.2). These procedures clearly demonstrate the straightforwardness of R/Python syntheses

under reticulate.

ffallP$mean()

obs 7.000000
time 3.000000
height 118.923077
error 3.161538
dtype: float64

ffallP$var()

obs 15.166667
time 3.791667
height 3495.243590
error 1.512147
dtype: float64

ffallP$kurt()

obs -1.200000
time -1.200000
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height -0.692166
error 0.445443
dtype: float64

Note that the final result is clearly being provided by Python because kurtosis functions are

not native to the R stats package.

For further analysis in R these attributes will need to be explicitly converted to R objects using

the function py_to_r().

trans <- ffallP$transpose() # transpose matrix
transR <- py_to_r(trans)

apply(transR, 1, mean)

obs time height error
7.0000 3.0000 118.9231 3.1615

9.5.11 Python versus R

R generally allows much greater flexibility than Python for explicit statistical analyses and

graphical summaries. For example, the Python statistics library Pymer4 actually uses general-

ized linearmixed effect model (see Aho (2014)) functions from theR package lme4 to complete

computations. Additionally, Python tends to be less efficient thanR for pseudo-randomnumber

generation32, since it requires looping to generate multiple pseudo-random outcomes (see

Van Rossum and Drake (2009)).

Example 9.31.

Here I generate 108 pseudo-random outcomes from a continuous uniform distribution (pro-

cessor details footnoted in Example 9.6).

R:

system.time(ranR <- runif(1e8))

user system elapsed
2.36 0.10 2.43

Python:

32A pseudo-random number generator (PRNG) is a deterministic algorithm for generating numbers whose

properties approximate those of random numbers (Wikipedia, 2024h). A PRNG sequence is dependent on an

initial seed value provided to the generator. By default, R PRNG seeds are generated from the current session

time. Details are provided in ?RNG. Numbers from distinct probability distributions can be generated from an

underlying pseudo-random continuous uniform sequence by obtaining the corresponding inverse CDF outcomes

for the same lower-tailed probability. R can employ a large number approaches for generating pseudo-random

numbers, including, by default, the “Mersenne-Twister” (Matsumoto and Nishimura, 1998).



9.5. PYTHON 399

1 import time
2 import random
3 ranP = []
4

5 start_time = time.time()
6 for i in range(0,9999999):
7 n = random.random()
8 ranP.append(n)
9 time.time() - start_time

2.976600408554077

The operation takes much longer for Python than R.

The Python code above requires some explanation. On Lines 1 and 2, the Python modules time

and random are loaded from the Python standard library, and on Line 3 an empty list ranP is
created that will be filled as the loop commences. On Line 5, the start time for the operation is

recorded using the function time() from the module time. On Line 6 a sequence of length 108
is defined as a reference for the index variable i as the for loop commences. On Lines 7 and 8

a random number is generated using the function random() from the module random and this

number is appended to ranP. Note that Lines 7 and 8 are indented to indicate that they reside

in the loop. Finally, on Line 9 the start time is subtracted from the end time to get the system

time for the operation.

�

On the other hand, the system time efficiency of Python may be better than R for many appli-

cations, including the management of large datasets (Morandat et al., 2012).

Example 9.32.

Here I add the randomly generated dataset to itself in R:

system.time(ranR + ranR)

user system elapsed
0.17 0.00 0.19

and Python:

start_time = time.time()
diff = ranP + ranP
time.time() - start_time

0.08802533149719238

For this operation, Python is faster.

�
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Of course, IDEs like RStudio allow, through the package reticulate, simultaneous use of both R

and Python systems, allowing one to draw on the strengths of each language.

Exercises

1. The Fortran script below calculates the circumference of the earth (in km) for a given

latitude (measured in radians). For additional information, see Question 6 from the

Exercises in Ch 2. Explain what is happening in each line of code below.

1 subroutine circumf(x, n)
2 double precision x(n)
3 integer n
4 x = cos(x)*40075.017
5 end

2. Create a file circumf.f90 containing the code and save it to an appropriate directory.

Take a screen shot of the directory.

3. Compile circumf.f90 to create circumf.dll. In Windows this will require the shell

script shown below. You will have to supply your own Root part of address, and
Approriate directorywill be the directory containing circumf.f90. Take a screen-
shot to show you have created circumf.dll. Running the shell code may require that

you use the shell as an Administrator.

cd Root part of address\bin\x64
R CMD SHLIB Appropriate directory/circumf.f90

4. Here is a wrapper33 for circumf.dll. Again, you will have to supply Approriate
directory. Explain what is happening on Lines 2, 4, and 5. And, finally, run:

cearthf(0:90).

1 cearthf <- function(latdeg){
2 x <- latdeg * pi/180
3 n <- length(x)
4 dyn.load("Appropriate directory/circumf.dll")
5 out <- .Fortran("circumf", x = as.double(x), n = as.integer(n))
6 out
7 }

5. Here is a C script that is identical in functionality to the Fortran script in Q. 1. The header

#include <math.h> (see Section 9.3.2) allows access to C mathematical functions, in-

cluding cos(). Describe what is happening on Lines 7-10.

33Unix-alikes should replace circumf.dllwith circumf.o.
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1

2 #include <math.h>
3

4

5 void circumc(int *nin, double *x)
6 {
7 int n = nin[0];
8 int i;
9 for (i=0; i<n; i++)

10 x[i] = (cos(x[i]) * 40075.017);
11 }

6. Repeat Qs, 2 and 3 for the C subroutine circumc.

7. Here is an Rwrapper for circumc.dll. Explain what is happening on Lines 4-6 and run:

cearthc(0:90).

1 cearthc <- function(latdeg){
2 x <- latdeg * pi/180
3 n <- length(x)
4 dyn.load("Appropriate directory/circumc.dll",
5 nin = n, x)
6 out <- .C("circumc", n = as.integer(n), x = as.double(x))
7 out
8 }

8. Complete Problem 5 (a-f) from the Exercises in Ch 2 using C++ via Rcpp. The code below

completes part (a) and (b). Note the use of decimals to enforce double precision.

library(Rcpp)

src <-
'
#include <Rcpp.h>
#include <cmath>

using namespace Rcpp;
// [[Rcpp::export]]

List Q8(){
double a = 1 + 3./10. + 2;
double b = (1. + 3.)/10. + 2;
return List::create(Named("a") = a,

Named("b") = b);
}'
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sourceCpp(code = src)
Q8()

$a
[1] 3.3

$b
[1] 2.4

9. Using Rcpp, Create a C++ function for calculating the Satterthwaite degrees of freedom

(see Q 2 from the Exercises in Ch 8). Test using the data: x <- c(1,2,3,2,4,5) and y
<- c(2,3,7,8,9,10,11).

10. Make a Python list with elements "pear", "banana", and "cherry".

(a) Extract the second item in the list.

(b) Replace the first item in the list with "melon".
(c) Append the number 3 to the list. .

11. Make a Python tuple with elements "pear", "banana", and "cherry".

(a) Extract the second item in the tuple.

(b) Replace the first item in the tuple with "melon". Was there an issue?

(c) Append the number 3 to the tuple. Was there an issue?

12. Using def(), write a Python function that will square any value x, and adds a constant c
to the squared value of x.

13. Call Python from R to complete Problem 5 (a-h) from the Exercises in Ch 2. Document

your work in RMarkdown.



Chapter 10

Building R Packages

“There are two ways of constructing a software design: One way is to make it so

simple that there are obviously no deficiencies, and the other way is to make it so

complicated that there are no obvious deficiencies. The first method is far more

difficult.”

- Tony Hoare, Pioneering British computer scientist

10.1 Introduction

One of strengths of R is its capacity to format and share user-designed software as packages.

Clearly it is possible to apply R for one’s entire scientific career without creating an R package.

However, development of a package, even if it is not distributed to a formal repository, ensures

that your software is trustworthy and portable. Importantly, this chapter only provides a

overview of basic topics in package development. The most thorough and up-to-date guide

to package creation is the document Writing R Extensions, which is maintained by the the R

development core team.

10.2 Package Components

An R package is a directory of files, generally with nested subdirectories. Specifically,

• DESCRIPTION andNAMESPACE files define fundamental characteristics of the package, e.g.,

the author(s), the maintainer, the package version, the dependency on other packages,

etc.

• Subdirectories, and their nested files, contain the package contents. The following

subdirectories are possible, although not all need to exist within a package.

• The R subdirectory contains the package R code, stored as .r files, and will almost always

exist.

• The data subdirectory contains package datasets, usually stored as .rda files, which can

be created using save().

403

https://cran.r-project.org/doc/manuals/R-exts.html
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• The man subdirectory contains the package documentation, stored as .rd files, for func-

tions (in the R directory) and data (in data), and almost always exists.

• The (optional) src subdirectory contains raw source code requiring compilation (C,

C++, Fortran). When building a package Rwill call R CMD SHLIB (see Section 9.1.6) to

create appropriate binary shared library files.

• Other potential subdirectories include: demo, exec, inst, po, tests, tools, and
vignettes.

Fig 10.1 shows the contents of the streamDAG package. These directories, and their files, are

contained within a parent directory called streamDAG.

Figure 10.1: Subdirectory level components of the streamDAG package.

Example 10.1.

Creation of package components can be facilitated with the function package.skeleton() .
From the package.skeleton() documentation Examples (see ?package.skeleton), assume

that we want to build a package that contains two silly functions: (f and g) and two silly

datasets: (d and e).

f <- function(x, y) x + y
g <- function(x, y) x - y
d <- data.frame(a = 1, b = 2)
e <- rnorm(1000)

We specify these as the list argument in package.skeleton() and give the package the

namemypkg.

package.skeleton(list = c("f","g","d","e"), name = "mypkg")

Running this code will cause a package skeleton formypkg to be sent to the working directory.

Note that the skeleton contains the subdirectories: data, r, and man (Fig 10.2). The datasets
d and e were converted to .rda files by package.skeleton() and were placed in the data
subdirectory. The functions f and gwere converted to .r files and placed in the r subdirectory.
Documentation skeletons for both functions and both datasets, as .rd files, were placed in

the man subdirectory. Package DESCRIPTION, NAMESPACE files, and a throw-away (Read-and-
delete-me) file were also created (Fig 10.2).
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Figure 10.2: Subdirectory level components of the toymypkg package.

�

10.3 Datasets (the data Subdirectory)

Datasets in R are stored in the data subdirectory. Three data formats are possible:

• Raw .r code

• Tabular data (e.g., .txt, .csv files)

• Data “images” created using the function save(), e.g., .rda or .Rdata files. This approach
is generally recommended, particularly for large datasets. Here we create a simple .rda

dataset, and send it to the working directory.

x <- rnorm(5)
save(x, file = "x.rda")

Data from packages will either be accessible via lazy loading (which allows increased accessi-

bility) or with the data() function. Under the former approach, package data objects will not

be loaded upon loading of their package environment, however promises are created, requiring

the object to be loaded when its name is entered in a session. Lazy loading always occurs for

package R code but is optional for package data. Lazy loading of data can be specified in a

‘LazyData’ field from a package’s DESCRIPTION file (see below). Examples of lazy loaded

data include objects from the package datasets. Note that these do not require data() for

loading:

datasets::BOD # data describing Biochemical Oxygen Demand

Time demand
1 1 8.3
2 2 10.3
3 3 19.0
4 4 16.0
5 5 15.6
6 7 19.8

Under the latter, more common approach, data(*foo*)must be called to allow availability of

the dataset foo.
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library(asbio)
data(bighorn.sel) # bighorn sheep resource use and availability
bighorn.sel

resources avail y1 n1
1 Riparian 0.06 0 445
2 Conifer 0.13 6 445
3 Mt. Shrub 1 0.16 9 445
4 Aspen 0.15 18 445
5 Rock outcrop 0.06 14 445
6 Sage/Bitterbrush 0.17 63 445
7 Windblown ridges 0.12 46 445
8 Mt shrub 2 0.04 62 445
9 Prescribed burns 0.09 178 445
10 Clearcut 0.02 49 445

10.4 R Code (the r Subdirectory)

Code for functions is generally stored in the r directory, as .r files. IDEs like RStudio, which

contain options for the generation of .r scripts, e.g., File> New File> R script, can greatly aid

in this process. Single .r files can contain multiple functions, although a one function per file

approach may be easier to manage.

10.5 Documentation (the man Subdirectory)

As functions become complex, it may become difficult to keep track of the meaning of function

arguments, and the characteristics of function output, using a simple notes-to-self approach,

e.g., #. R documentation (.rd) files provide a framework for documenting,R functions, methods,

and datasets. The prompt() family of functions can greatly facilitate the creation of .rd files. In

Example10.1, the functionpackage.skelton()used the functionsprompt() andpromptData
to build documentation skeletons for functions and datasets, respectively. For instance, the

code below was applied to create documentation for the function f().

f <- function(x, y) x + y
prompt(f, filename = "f")

Created file named 'f'.
Edit the file and move it to the appropriate directory.

This code causes the file f.rd to be generated, and sent to the working directory for further

editing (Fig 10.3).
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Figure 10.3: Documentation file skeleton for the toy function f()

Some guidance for completing .rd files is provided by notes in the skeleton generated by

prompt(). I have removed these notes in Fig 10.3 to save space. As before, the authoritative

resource for documentation building is Writing R Extensions.

Package documentation files can be placed into a man directory and compiled into a single

documentation entity as the package is compiled1, or compiled singly for R objects that a

user deems worthy of documentation. The latter approach is facilitated with the Preview

widget in RStudio, which is available upon opening an .rd file. Running Preview on the file

f.rd resulting in the .html preview shown in Fig 10.4.

1Following package compilation, installation, and loading, this allows access to documentation via

help(documented topic) or ?documented topic (Section 2.4)

https://cran.r-project.org/doc/manuals/R-exts.html
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Figure 10.4: Preview of the .html generated from the code shown Fig 10.3.

An .rd file can be converted to legible documentation in .html, .pdf or other formats by de-

positing the file in the R directory containing R CMD routines (e.g., bin/x64), and running

the appropriate R CMD algorithms from the command line. In Windows this requires first

navigating to the directory containing the R CMD routines using the Windows shell command

line editor (see Ch 9). Important R CMD documentation rendering algorithms include:

• R CMD Rd2pdf foo.rd‘, can be used to compile the documentation file foo.rd into a .pdf

document.

• R CMD Rd2txt foo.rd‘, can be used to compile the documentation file foo.rd into a pretty

text format.

• R CMD Rdconv foo.rd‘, can be used to compile the documentation file foo.rd into a variety

formats including plain text, HTML, or LaTeX.

10.6 The DESCRIPTION File

The DESCRIPTION file contains basic information about a package. The DESCRIPTION file

skeleton for themypkg package, created by package.skeleton() in Example 10.1, is shown

in Fig 10.5.
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Figure 10.5: DESCRIPTION file of the toymypkg package.

The DESCRIPTION file will have a Debian control file format (see ?read.dcf. Specifically,

fields in DESCRIPTIONmust start with the field name, comprised of ASCII (Ch 12) printable

characters, followed by a colon. The value for the field is given after the colon and an additional

space (Fig 10.5). If allowed, field values longer than one line must use a space or a tab to start

a new line. Specification of ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’,
‘Author’, and ‘Maintainer’ fields, shown in Fig 10.5, are mandatory.

• The ‘Package’ field gives the name of the package.

• The ‘Version’ field gives a user-specified package version. It should be a sequence of at
least two non-negative integers separated by single usages ‘.’ and/or ‘-’ characters.

• The ‘Title’ field should provide a descriptive title for the package. It should use title

case (capitals for principal words), and not have any continuation lines.

• The ‘Author’ field describes who wrote the package. Note that if your package contains

wrappers of the work of others, which are included in the src directory, then you are

not the sole author.

• The ‘Maintainer’ field provides a single name followed by a valid email address in

angle brackets (Fig 10.5).

• The ‘Description’ field should provide a comprehensive description of what the pack-

age does. Several (complete) sentences, complete, although these should limited to

one paragraph. The field value should not to start with the package name, or ‘This
package...’.

• The ‘License’ field provides standard open source license information for the package.

Failure to specify license information may prevent others from legally using, or distribut-

ing your package. Standard licenses available from (https://www.R-project.org/Licens

es/) include GPL-2, GPL-3, LGPL-2, LGPL-2.1, LGPL-3, AGPL-3, Artistic-2.0, BSD_2_clause,

and BSD_3_clause MIT. See Writing R Extensions for more information.

• Other optional fields include: ‘Copyright’, ‘Date’, ‘Depends’, ‘Imports’,
‘Suggests’, ‘Enhances’, ‘LinkingTo’, ‘Additional_repositories’, ‘SystemRequirements’,
‘URL’, ‘BugReports’, ‘Collate’, ‘LazyData’, ‘KeepSource’, ‘ByteCompile’,
‘UseLTO’, ‘StagedInstall’, ‘Biarch’, ‘BuildVignettes’, ‘VignetteBuilder’,
‘NeedsCompilation’, ‘OS_type’, and ‘Type’. See Writing R Extensions for more

information on these fields.

https://www.R-project.org/Licenses/
https://www.R-project.org/Licenses/
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html
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10.7 The NAMESPACE File

The R namespace management system allows package authors to specify which variables in

the package can be exported to package users, and which variables should be imported from

other packages. The mandatory NAMESPACE file for the toymypkg package is extremely simple

(Fig 10.6). It indicates that all four objects contained in the package, and their associated

names, can be exported. If one wishes to export all objects and names for a large package, it is

simpler to specify: exportPattern(.).

Figure 10.6: NAMESPACE file of the toymypkg package.

Import of exported variables from other packages requires specification of import and

importFrom. The import directive imports all exported variables from specified package(s).

Thus, import(foo) imports all exported variables in the package foo. If a package requires

some of the exported variables from a package, then importFrom can be used. The NAMESPACE
directive importFrom(foo, f, g) indicates that f and g from package foo should be

imported.

To ensure that S3 methods for package classes are available, one must register the methods

in the NAMESPACE file. For instance, if a package has a function print.foo() that serves as
a print method for class foo, then one should include S3method(print, foo) as a line in

NAMESPACE.

## Package Compilation As with compilation of C and Fortran files (Ch 9), and the

conversion of individual .rd files, the building and installation of a user-designed pack-

age requires depositing the package contents in the R directory containing the R CMD
routines.[Or providing a navigation address to the package for R CMD],[Probably the only R CMD routine isn’t

clearly tied to the development of R packages is Rcmd BATCH, which is used for running R

scripts from the command line.] As before, one must run R CMD routines from the command

line, requiring (in Windows) that a user navigate to the directory containing the R CMD
routines at the Windows shell command line. This is unnecessary in Unix-like operating

system (including MacOS), as these algorithms can be called directly from the computer’s

command line. R CMD routines for package building include:

• R CMD build foo, which would build the package foo.

• R CMD check foo.tar.gz, which would check the tarballed package foo.tar.gz, created by

R CMD build.
• R CMD INSTALL foo.tar.gz can be used to install the package foo.

Example 10.2.

Continuing from Example 10.1, I complete the following steps for package building/compres-

sion, checking, and installation.

• Here I Build a tarballed version of themypkg package using: R CMD build mypkg.
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• Here I check the tarballed versionof thepackageusing: R CMD check mypkg_0.1.tar.gz.

Note that the checks from R CMD check can be extensive (the output above is just an excerpt).

Checks are even more taxing if one uses the option --as-cranwhich performs assessments

one must pass for submission to CRAN.

• Finally, I Install the mypkg package into my workstation using: R CMD INSTALL
mypkg_0.1.tar.gz.

�

Exercises

1. Create an .rd documentation file for the function for McIntosh’s index of site biodiversity

from Exercise 2 in 8. Make a .pdf or .html from the .rd file using the appropriate R CMD
routines.

2. Create an R package consisting of at least one function. Specifically,
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(a) Create a skeleton of the package using package.skeleton().
(b) Finish the .rd file(s) in man.
(c) Complete the DESCRIPTION file.
(d) Complete the NAMESPACE file.
(e) Build the package using R CMD build.
(f) Check the package using R CMD check. Modify the package (if necessary) until no

more ERRORS or WARNINGS occur.



Chapter 11

Interactive andWeb Applications

“A user interface is like a joke. If you have to explain it, it’s not that good.”

-Martin LeBlanc, Iconfinder cofounder

11.1 Introduction to GUIs

It is possible build GUIs (Graphical User Interfaces) that allow users to interact with R using

graphical icons and visual indicators. These can be created using a number of methods and

language frameworks. The interactive control components of a GUI are called widgets. The

following are some commonly used widgets:

• button: typically a GUI controller for binary (e.g., on/off or run/don’t run) operations:

• radio button: A button allowing selection from a group of mutually-exclusive options

that are linked to specific operations:

• check button or check box: A controller that allows selection of one or several mutually-

exclusive binary options via a check mark tick,2� , or a cross,4 . Like other buttons, the

widget can be linked to a second variable, allowing flexible rendering of a secondary set

of widgets:

• spin box: Provides a “spin-able” set of mutually exclusive (often numeric) options that

can be selected and linked to operations:

• combo box: A text field with a popdown selection list:

413
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• slider: A sliding left-to-right (horizontal) or up-down (vertical) handle controller that

defines a numeric value (or range of values, if two slider handles are present) for a

linked variable that changes uniformly over some range:

• message box: A message window that typically prompts a user response and a corre-

sponding linked operation:

• scroll bar: A modifiable viewport for a scrollable object (e.g., text that can be examined

line by line):

• pulldown menus: Interactive menus with pulldown tabs andmenu buttons that specify

operations, potentially including links to other GUIs.

R GUIs are are a mixed bag. On the plus side, R GUIs: 1) increase user-friendliness by allowing

point and click operations, 2) allow rapid visual assessment of alteration to function arguments

via widgets, 3) are often very amenable to graphics manipulations, and 4) are often very

useful for data exploration or heuristic demonstrations. On the other hand, R GUIs: 1) often

result in a loss of flexibility in controlling functions, 2) may contain a visually confusing mish-

mash of widgets, and 3) constitute mysterious black boxes, which is contrary to the “mission

statement” of R (Chambers, 2008). Further, command line (non-GUI) code entry allows an

exact record of characteristics given to objects, and specifications provided to functions. This

allows straightforward tracking, dissemination, and repeatability of computational analyses.

Despite potential drawbacks, I will explore four methods for creating GUIs that are underlain

by R or with explicit R interactivity. These are: 1) TclTk GUIs generated with the tcltk package,

3) Plotly interactive plots via the plotly package, 3) applications created through the shiny

package, and 4) Qt GUI executables driven by C++ bindings to R via the Rinside package. There

are a large number of other packages/approaches for building GUIs with R that generally use

Java-alike bindings for rendering in HTML. Some of these methods are briefly considered in
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Section 11.3.

11.2 tcltk

The R distribution package tcltk (pronounced: tickle tee kay) allows the building of GUIs by

providing a binding wrapper for Tcl/Tk, which denotes the Tcl language via its Tk toolkit

(Ousterhout, 1991)1. In Python, bindings for Tcl/Tk are provided by the Python library tkinter

which is included in the Python standard library of packages. Unfortunately, better support

exists for tkinter than tcltk2.

Lack of guidance for the tcltk package is likely due to the absence of a large user group.

Assistance for the creation of tcltk GUIs can be found in several older articles from R News

(which has since been replaced by the R Journal) (Dalgaard, 2001, 2002; Fox, 2007), the book

“Programming GUIs in R” (Lawrence and Verzani, 2018), and in the GUI code for a number of

newerR packages, including Rcmdr (Fox, 2005; Fox et al., 2023) and asbio (Aho, 2023). Despite

these resources, however, it is expected that users refer to the Tcl/Tk package manual for

argument lists anddescriptions of tcltk functions. Arguments in tcltk functions (generally) have

the same names and functionality as their Tcl/tk equivalents, although some experimentation

may be necessary.

Tcl/Tk itself is cross platform, and uses facilities particular to the underlying OS. These are

Xlib (X11) (a windowing system, written in C, for bitmap displays) for Unix/Linux, Cocoa for

Mac OS, and the Graphics Device Interface (GDI) for Windows.

So-called Themed Tk (Ttk) GUIs often have advantages over older Tk GUIs, including anti-

aliased font rendering, and have been a part of the Tk distribution since Tcl version 8.5.

Naming conventions in tcltk indicate whether functions are binding for Tk or Ttk operations.

The former function names start with tk, while the latter start with ttk.

Notably, tcltk GUIs that use or manipulate R graphics devices, particularly those with slider

widgets, may work poorly with the native RStudio graphics device: RStudioGD. Thus, to run
these sorts of GUIs in RStudio, one should open a non-RStudioGD device using:

dev.new(noRStudioGD = TRUE)

The binding mechanism of tcltk is apparent by examining underlying code from some of

its core functions. The tcltk function tcl() provides a generic interface for any Tk or Tcl

command. For example, the code:

tcl("label", tt, text = "Hello, world!", bg = "red")

1Tcl, an acronym for “tool command language,” is an interpreted programming language that is often embedded

into C applications. Tk is a Tcl package for GUI building. Tk, when implemented in Tcl, is termed Tcl/Tk.
2Many non-Tcl/Tk approaches exist for GUI-building in Python, although they are not included in the Python

standard library.

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/index.html
https://www.tcl.tk/man/tcl8.6/UserCmd/contents.html
https://wiki.python.org/moin/GuiProgramming
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is equivalent to the tcltk call:

tklabel(tt, text = "Hello, world!", bg = "red")

where tt is the top-level GUI object. Both of these scripts will call an API to generate the

Tcl/tk code:

label tp -text "Hello, world!" -bg red

where tp is the path name of the Tcl/Tk label object.

Many tcltk commands are simply calls to tcl().

Example 11.1.

Here we see that tcl() calls .Tcl.objv() whose arguments, in turn, are formatted by

.Tcl.args.objv().

require(tcltk)
tcl

function (...)
.Tcl.objv(.Tcl.args.objv(...))
<bytecode: 0x0000012d8dba97e0>
<environment: namespace:tcltk>

The function .Tcl.objv() calls an underlying C algorithm, .C_dotTclObjv(), using

.External() that binds tcl() to Tcl/Tk.

.Tcl.objv

function (objv)
structure(.External(.C_dotTclObjv, objv), class = "tclObj")
<bytecode: 0x0000012d8dba8eb0>
<environment: namespace:tcltk>

The tcltk C executable (Section 9.1.4), tcltk.dll constitutes the R API for Tcl/tk. It is housed

in the tlctk package libs/x64 directory (Ch 10).

tcltk:::.C_dotTclObjv$dll

DLL name: tcltk
Filename: C:/Program

Files/R/R-4.5.1/library/tcltk/libs/x64/tcltk.dll
Dynamic lookup: FALSE
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�

Example 11.2. As an initial foray into tcltk GUI-building we will create a button interface

whose only purpose is to provide a message, and a means for destroying itself.

1 tt <- tktoplevel()
2 hello <- tkmessage(tt, text = "Hello world!")
3 spacer = tklabel(tt, padx = 20)
4 DM.but <- tkbutton(tt, text = "Exit", foreground = "red",
5 background = "lightgreen", padx = 10,
6 command = function() tkdestroy(tt))
7 tkpack(hello, spacer, DM.but)

• On Line 1, I load the tcltk package.

• On Line 2, I use use tktoplevel() to hierarchically define the “top level” widget as the

object tt.
• On Lines 3-4, I create a text message object, hello, and a spacer object, spacer. That
latter is used to make room between the message and a button created in the next two

lines of code.

• On Lines 5-6 the button widget object DM.but is created, using the function tkbutton().
The first argument is name of parent widget, tt. The text argument provides a text

label for the button. The arguments foreground, background, and padx are used to

define the foreground color (the color of the button text label), the background color of

the button, and to make the button wider, respectively. The command argument defines

the function that the button initiates. In this case, the function tkdestroy(), which

destroys the GUI.

• On Line 8, tkpack() is used to place the button on the parent widget.

The GUI itself is shown in Fig 11.1.

Figure 11.1: A simple tcltk GUI.

�
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11.2.1 Assigning and Manipulating Widget Values

It is often useful to “remember” object characteristics and assignment values over the course

of a GUI’s usage. For example, it may be necessary to count the number of times a button is

pressed, or display a particular message based on a previous response. Because GUI actions

will be carried out by local variables in functions, modifications to those variables will be lost

when the function exits. While not usually good practice, one can use the super assignment

operator <<- inside a function to create global variables. These will retain their values after

the function exits.

The tclVar() function can be used to create an empty or specific values, which can then be

used in call to other functions in the tcltk package. For example, to specify an empty tclVar()
value, one could use:

myvar <- tclVar('')

To access myvar information in widgets with R one could then use:

rmyvar <- tclvalue(myvar)

Conjoined use of the super-assignment operator with tclVar() and tcl() is often very im-

portant when altering object parameters within tcltk functions.

11.2.2 User functions and tcltk GUIs

Callbacks are functions that are linked to GUI events. In tclk these functions can be

user-defined, although they should not have arguments. Callbacks, user defined or oth-

erwise, are generally executed using the command argument in a widget function. Recall,

for example, use of tkbutton(tt, command = functiton() tkdestroy) in Example

11.2. In general, a callback function foo() is called using command = foo() or command =
substitute(foo()). Use of substitute(foo()) allows substitution of variable values in

foo(). Calling a function bar() from within the callback foo()may require coding similar to

foo <- function(){substitute(bar())}. See, for instance, asbio::anm.ci.tck().

Example 11.3.

Consider the following silly example for finding the sum of two numbers.

1 tt <- tktoplevel()
2 tw1 <- tclVar(''); tw2 <- tclVar('')
3 tke1 <- tkentry(tt, width = 6, textvariable = tw1, justify = "center")
4 tke2 <- tkentry(tt, width = 6, textvariable = tw2, justify = "center")
5

6 sumf <- function(){
7 temp <- as.numeric(tclvalue(tw1)) + as.numeric(tclvalue(tw2))
8 tkconfigure(ans, text = paste(temp))
9 }
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10

11 ans <- tklabel(tt, text = '', background="white", relief = "sunken", padx = 20)
12 tkgrid(tke1, tklabel(tt, text = '+'), tke2, tklabel(tt, text = '='), ans)
13 tkgrid(tklabel(tt, text = ''), columnspan = 5)
14 tkgrid(tkbutton(tt, text = 'Get Sum!', foreground = "red",
15 background = "lightgreen", command = sumf),
16 columnspan = 5, sticky = "e")

• On Line 1, I use tktoplevel() to define the “top level” widget.

• On Line 2, I specify empty initial values for the variables tw1 and tw2 using tclVar().
These values will be editable by users via tkentry()widgets.

• On Lines 3-4, I use the function tkentry() to providewidgets for users to enter numbers

to be summed.

• On Lines 6-9, I create the function sumf. The function tclvalue(), used to compute the

summation object temp, allows Tcl variables from tclVar() to be evaluated in R. These

variables, however, will have class character, andwill require as.numeric(), as shown,

for mathematical evaluation. One Line 8 (the final line of code in sumf, tkconfigure()
is used to potentially change ans, a tkentry() object defined on Line 11.

• On Line 11, the tkentry() object ans is created and an initial empty value is assigned.

• On Lines 12-16, widgets are placed in the GUI using tkgrid(). The use of grid geometry

approaches including tkgrid() is elaborated next. The tkbutton widget in the final

(bottom) grid of the GUI calls the sumf using either command = sumf, as shown, or

command = substitute(sumf()).

The resulting GUI is shown in Fig 11.2.

Figure 11.2: A simple tcltk GUI, demonstrating the use of tclVar() and tclvalue().

�
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11.2.3 GUI Geometry

An important consideration in GUI development is geometry management, e.g., the dimensions

of the GUI and the organization of widgets. By default, Tcl/Tk GUI windows are autosized

to hold widgets as they are added. Widgets may be reorganized as the sizes of windows are

altered. If a Window becomes too small to contain widgets, the last widget added will be the

first removed.

The initial size of GUIs can be specified using the function tkcanvas(). The result of the code
below is shown in Fig 11.3

tt <- tktoplevel()
tktitle(tt) = "Wide GUI"
dim <- tkcanvas(tt, height = 30, width = 500)
tkgrid(dim)

Figure 11.3: A tcltk GUI whose initial width was specified using tkcanvas().

Three different geometrymanagers are available in Tcl/Tk for inserting widgets in GUIs. These

are called: placer, packer, and grid manager. The placer tool is seldom used in GUI creation

(Dalgaard, 2001). Thus, wewill concentrate onGUI constructionusing packer and gridmanager

approaches. Only one of these approaches is generally used in the creation of a GUI. The initial

Examples 11.2 and 11.3 use simple applications of packing and grid management, respectively.

11.2.3.1 Packing

The function tkpack() packs widgets around the edges of a conceptual cavity. Control of this

process is provided by the side, which has options: "left", "right", "top" or "bottom".

Example 11.4.

Note the result of the code below (Fig 11.4).

1 tt <- tktoplevel()
2 edge <- c("top","right","bottom","left")
3 buttons <- lapply(1:4,
4 function(i) tkbutton(tt, text = edge[i],
5 background = "lightgreen", foreground = "red"))
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6 for (i in 1:4)
7 tkpack(buttons[[i]], side=edge[i], fill = "both")

• On Line 1, the top level widget is designated.

• On Line 2, a character vector is created, containing all the possible side options for the
function tkpack().

• On Lines 3-5, a four item list is generated containing four tkbuttonwidgets.

• In Lines 6-7, buttons are accessed from the buttons list and packed, in order, at the spec-
ified locations "top", "right", "bottom", and "left". The argument fill = "both"
ensures that the buttons will occupy all of their allocated parcels with respect to the

tkpack() conceptual central cavity. Because the top button was specified first, it takes

up the entire top of the GUI. The right button, codified next, occupies the entire right-

side of the GUI, except for the area now occupied by top, and so on. If an object does not

fill its parcel it can be anchored to a GUI location using the tkpack() argument anchor.
This is accomplished by specifying compass-style values like "n" or "sw"which place a

widget the middle top, and bottom left of the parcel, respectively. The default option is

anchor = "center".

Figure 11.4: A demonstration of the result of packing using tkpack(). Code follows (Dalgaard,

2001).

�

Example 11.5.

Calculator construction is often used as a pedagogic exercise in computer programming. As

an extended example of packing using tkframe(), we will build a tcltk calculator GUI. For

this example I am indebted to lecture notes for a 2011 statistical programming course at UC

Berkeley.

The most important coding concept used here is the pairing of the base R functions parse()
(which converts a string to an expression) and eval() (which evaluates an expression). This

combination allows the mathematical evaluation of a character string. Consider the string "9
* 3". The mathematical solution can be obtained using:

https://www.stat.berkeley.edu/~s133/
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txt = "9 * 3"
eval(parse(text = txt))

[1] 27

Our calculator GUI will require three functions: mkput(), clearit(), and docalc(). Each of

these functions creates a global variable, calcinp, using the super assignment operator, <<-,
that provides input to the calculator. Further, in all three functions, tkconfigure() is used to

change the calculator’s display, based on input from the GUI calculator keys.

1 calcinp <- ''
2

3 mkput <- function(sym){
4 function(){
5 calcinp <<- paste(calcinp, sym, sep='')
6 tkconfigure(display, text = calcinp)
7 }
8 }

• On Line 1 in the chunk above, calcinp is initially set to be an empty character string,

i.e., calcinp <- ''.

• On Lines 3-8, the callback function mkput is defined. Note that mkput itself contains an
argument-less function. This allows mkput to have an argument, sym, while satisfying

the tcltk requirement for argument-less callbacks. The code on Line 5, calcinp <<-
paste(calcinp, sym, sep=''), generates a global, updated form of calcinp, that
combines an older calcinp value with a new calculator key specification, sym. The
resulting string is placed in the display using tkconfigure().

• The callback function clearit below, clears the display (Line 10), and redefines calcinp
as an empty string (Line 11).

9 clearit <- function(){
10 tkconfigure(display, text = '')
11 calcinp <<- ''
12 }

• The callback function docalc below, evaluates the general eval(parse(text =
calcinp)) framework created by key entry, and provides exception handling in the

case of key stroke errors by using if(class(result) == 'try-error'); calcinp
<<- 'Error' on Lines 15-16. Importantly, the function try() (Line 14) will assign the

class try-error to an expression that fails.

13 docalc <- function(){
14 result = try(eval(parse(text = calcinp)))
15 if(class(result) == 'try-error')
16 calcinp <<- 'Error'
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17 else calcinp <<- result
18 tkconfigure(display, text = calcinp)
19 calcinp <<- ''
20 }

We call these three functions in the GUI itself, which is generated in the code below (Lines

21-60).

• The largest calculator code component defines the form and arrangement of calcula-

tor key (Lines 27-60). Note that buttons are packed, by row, using tkpack() within

tkframe() objects. All button widgets use command = mkput except for the clear key,
which uses command = clearit, and the equals key, which uses command = docalc.

21 base <- tktoplevel()
22 tkwm.title(base,'Calculator')
23

24 display <- tklabel(base,justify='right',background="white",
25 relief="sunken", padx = 50)
26 tkpack(display,side='top')
27 row1 <- tkframe(base)
28 tkpack(tkbutton(row1,text='7',command=mkput('7'),width=3),side='left')
29 tkpack(tkbutton(row1,text='8',command=mkput('8'),width=3),side='left')
30 tkpack(tkbutton(row1,text='9',command=mkput('9'),width=3),side='left')
31 tkpack(tkbutton(row1,text='+',command=mkput('+'),width=3),side='left')
32 tkpack(row1,side='top')
33

34 row2 <- tkframe(base)
35 tkpack(tkbutton(row2,text='4',command=mkput('4'),width=3),side='left')
36 tkpack(tkbutton(row2,text='5',command=mkput('5'),width=3),side='left')
37 tkpack(tkbutton(row2,text='6',command=mkput('6'),width=3),side='left')
38 tkpack(tkbutton(row2,text='-',command=mkput('-'),width=3),side='left')
39 tkpack(row2,side='top')
40

41 row3 <- tkframe(base)
42 tkpack(tkbutton(row3,text='1',command=mkput('1'),width=3),side='left')
43 tkpack(tkbutton(row3,text='2',command=mkput('2'),width=3),side='left')
44 tkpack(tkbutton(row3,text='3',command=mkput('3'),width=3),side='left')
45 tkpack(tkbutton(row3,text='*',command=mkput('*'),width=3),side='left')
46 tkpack(row3,side='top')
47

48 row4 <- tkframe(base)
49 tkpack(tkbutton(row4,text='0',command=mkput('0'),width=3),side='left')
50 tkpack(tkbutton(row4,text='(',command=mkput('('),width=3),side='left')
51 tkpack(tkbutton(row4,text=')',command=mkput(')'),width=3),side='left')
52 tkpack(tkbutton(row4,text='/',command=mkput('/'),width=3),side='left')
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53 tkpack(row4,side='top')
54

55 row5 <- tkframe(base)
56 tkpack(tkbutton(row5,text='.',command=mkput('.'),width=3),side='left')
57 tkpack(tkbutton(row5,text='^',command=mkput('^'),width=3),side='left')
58 tkpack(tkbutton(row5,text='C',command=clearit,width=3),side='left')
59 tkpack(tkbutton(row5,text='=',command=docalc,width=3),side='left')
60 tkpack(row5,side='top')

A slightly modified form of the GUI (with colored buttons)3 is shown in Fig 11.5.

Figure 11.5: A Tcl/Tk calculator GUI generated using the R package tcltk.

The Python library tkinter provides a well supported binding resource for Tcl/Tk. As we know

(Ch 9) Python code can be run in R, using the package reticulate. Fig 11.6 shows an analogous

calculator the one shown in Fig 11.5, generated in R via the Python script calc.py, which is

contained at the book website. It is important to note that while the resulting GUI is generated

below in an RStudio R chunk, via reticulate, the code and engines for running the GUI are

Python, and thus, do not actually require R.

library(reticulate)
py_run_file(source_python("https://amalgamofr.org/Ch11functions/calc.py"))

The function reticulate::source_python() allows one to access Python source code.

3Code for Fig 11.5 canbeobtainedusingsource(url("https://amalgamofr.org/Ch11functions/calctcltk.R")).



11.2. TCLTK 425

Figure 11.6: A Tcl/Tk calculator GUI generated using Python code via the Python binding

library tkinter. Code follows a Python demo at the the geeksforgeeks website.

�

11.2.3.2 Grid Manager

Use of tkpack() and tkframe() provides a great deal of flexibility for creating GUI layouts.
They are, however, insufficient for handling a number of issues including lining widgets up

vertically and horizontally. The gridmanager function tkgrid() can be used to lay out widgets

in rows and columns using the arguments column and row. Importantly, column = 0 and

row = 0 equate to the first column and first row, respectively, in a GUI or container widget.

Additional important tkgrid() arguments include columnspan, rowspan, and sticky. The
latter argument is analogous to side in tkpack().

Example 11.6.

The callback function below creates a single large blue dot in an R graphics device whose

vertical position can be altered with a slider widget.

1 plot.me <- function(){
2 y <- evalq(tclvalue(SliderValue)) # Evaluate the expression
3 plot(1, as.numeric(y),xlab = "", ylab = "%", xaxt = "n", ylim = c(0,100),
4 cex = 4, col = 4, pch = 19)
5 }

The operation evalq(foo), (Line 2) above, is equivalent to eval(quote(foo)). The operation
quote(foo) simply returns the argument foo as an object of class “call”.

The GUI code below uses grid geometry to place widgets in specified GUI rows and columns.

https://www.geeksforgeeks.org/python-simple-calculator-using-tkinter/
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6 if(names(dev.cur()) == "RStudioGD") dev.new(noRStudioGD = TRUE)
7

8 slider.env <<- new.env()
9 tt <- tktoplevel(); tkwm.title(tt, "Slider demo")

10 SliderValue <- tclVar("50")
11 SliderValueLabel <- tklabel(tt, text = as.character(tclvalue(SliderValue)))
12 tkgrid(tklabel(tt, text = "Slider Value: "),
13 SliderValueLabel, tklabel(tt, text = "%"))
14 tkconfigure(SliderValueLabel, textvariable = SliderValue)
15

16 slider <- tkscale(tt, from = 100, to = 0, showvalue = F,
17 variable = SliderValue, resolution = 1,
18 orient = "vertical", command = substitute(plot.me()))
19

20 tkgrid(slider, column = 0, row = 1, columnspan = 2)
21 message = tkmessage(tt, text = "Move the slider to see changes in the plot")
22 tkgrid(message, column = 3, row = 1)

• On Line 6, I insure that the interactive will work in the RStudio system by creating a

non-RStudio graphics device if the default device is "RStudioGD". The code should work

inside and outside of RStudio.

• On Line 8, I create an environment for the slider widget using new.env().
• On Line 9, I use use tktoplevel() to hierarchically define the “top level” widget as the

object tt, and make a title.

• On Line 10, I define 50 as the initial value for the slider widget that will be created.

• On Line 11, a Tk label is created based on the slider output. Note the pairing of tclVar()
input and tclvalue() output. In this process, the SliderValueLabel label object is

configured to make its value equal to the SliderValue object.
• On Lines 12-13, the SliderValueLabel is inserted between two text strings in a grid

geometry.

• On Lines 16-18, the slider is parameterized using the function tkscale(). The use

of substitute() allows substitution of values for variables bound in the plot.me()
function.

• On Line 20, the slider is placed into the GUI at column 0 and row 1 (the first column and

second row).

• On Lines 21-22, a message is created and placed on the GUI at column 3 and row 1 (the

fourth column and second row).

The form of the final GUI is shown in Figure 11.7.
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Figure 11.7: A tcltk GUI for manipulating an R plot.

�

Example 11.7.

Here is another grid manager example with a radio button GUI that allows selection of a

bacterial phylum and printing of "Correct", "Incorrect" text in the console, based on the

button selection. It also embeds a photo.

1 tt <- tktoplevel()
2 tkwm.title(tt, "Bacterial phyla")
3 tkgrid(tklabel(tt, text = "Which phylum is shown?", padx = 5,
4 pady = 5, font = "bold"), column = 1, row = 1)
5

6 values <- c("Acidobacteriota", "Armatimonadota",
7 "Caldisericota", "Cyanobacteriota",
8 "Elusimicrobiota", "Spirochaetota",
9 "Thermomicrobia")

10

11 var <- tclVar(values[0]) # initially, no phyla selected
12

13 tkimage.create("photo", "cyano", file = "figs11/cyano.gif")
14

15 callback <- function() ifelse(tclvalue(var) == "Cyanobacteriota",
16 print("Correct"),
17 print("Incorrect"))
18

19 lf <- ttkframe(tt)
20 sapply(values, function(x) {
21 radio_button <- ttkradiobutton(tt, variable = var,
22 text = x, value = x,
23 command = callback)
24

25 tkgrid(radio_button, pady = 0, padx = 5, sticky = "nw",
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26 column = 1, rowspan = 1)
27 })
28

29 tkgrid(tklabel(tt, text = ""), sticky = "n", column = 1,
30 row = 9, columnspan = 1)
31 l <- ttklabel(tt, image = "cyano", relief = "ridge")
32 tkgrid(l, sticky = "nw", rowspan = 10, column = 2,
33 row = 0, pady = 25, padx = 10)

• On Line 1, the top level widget, tt, is designated.
• On Line 2, a GUI title is created.

• On Lines 3-4, the text “Which phylum is shown?” is placed in the column1, row1position,

using the grid manager function tkgrid().
• On Lines 5-9, a character vector of bacterial phylum names is created for use in the GUI.

• On Line 11 the initial phylum selection is specified. The use of tclVar(values[0])
means that no selection will be initially designated.

• OnLine 13, the functiontkimage.create() is used to import a photowith .gif formatting

(currently the only accepted format). The first argument "photo" indicates that an image

will be created from a photo. The second argument creates an object name for the import,

"cyano" that will called in later code.

• On Lines 15-17, a callback function, callback() is created to print the text "correct"
if Cyanobacteriota is selected, and print "incorrect" if some other selection is made.

• On Line 19, an embedded frame is created to hold the radio buttons.

• On Lines 20-27, sapply() is used to run a user-defined function that embeds radio

buttons for each level in the character vector values.
– OnLine21-23, the function creates anobjectradio_buttonusingttkradiobutton().
Note that the top-level path name, tt is given as the first argument, the initial

radio button designation is given in the second argument, the arguments text
and valuewill change levels in vaues change. the function callback() is called
using the ttkradiobutton() command argument to respond to the selected radio

button.

– On Lines 25-26, radio buttons are stacked, one row at a time, using tkgrid(), as
sapply() cycles through levles in values.

• On Lines 29-30, an aesthetic empty row is created at the bottom of column one create

some additional space.

• On Lines 31-32, the object l is created from the function ttklabel() to hold the image

object cyno, created on Line 13.

• On Lines 33-34, the image is embedded into the entirety of column two.

The final form of the GUI is shown in Fig 11.8.
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Figure 11.8: A radio button cltk GUI. Photo from CSIRO, CC BY 3.0, https://commons.wikime-

dia.org/w/index.php?curid=3548094

�

11.2.4 Widget Modifications

Tcl/Tk provides shared modification settings for many of its widgets. These include the

standard arguments foreground (the widget foreground color, see choices here), background
(the widget background color), image (an image to display in the widget)4, relief (the 3D
appearance of the widget), font, and text (a text string to be placed in the widget), among

many others. Be aware, however, that standard Tk widget modifiers may not always align with

Ttk modifiers.

Example 11.8.

Here is an example of a GUI with working (but non-functional) widgets that allows demonstra-

tion of relief, background, and foreground color options for different types of widgets.

1 types = c("flat", "groove", "raised", "ridge",
2 "solid", "sunken")
3 bg = c("beige", "AntiqueWhite1", "aquamarine4", "burlywood3")
4 fg = c("BlueViolet","aquamarine3", "white", "black")
5

6 base = tktoplevel()
7 tkwm.title(base,"Widget Styles")

4This requires creation with tkimage.create() (see Example 11.7).

https://www.tcl.tk/man/tcl/TkCmd/colors.htm
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8

9 cnames <- tkframe(base)
10 tkpack(tklabel(cnames, text = "Labels", font = "bold"),
11 side = "left", padx = 3)
12 tkpack(tklabel(cnames, text = "Buttons", font = "bold"),
13 side = "left", padx = 17)
14 tkpack(tklabel(cnames, text = "Radio buttons", font = "bold"),
15 side = "left", padx = 0)
16 tkpack(tklabel(cnames, text = "Sliders", font = "bold"),
17 side = "left", padx = 22)
18 tkpack(cnames, side = "top", fill = "both")
19

20 mkframe <- function(type){
21 fr <- tkframe(base)
22 tkpack(tklabel(fr, text = type, relief = type,
23 fg = fg[1], bg = bg[1]),
24 side = "left", padx = 5)
25 tkpack(tkbutton(fr, text = type, relief = type,
26 fg = fg[2], bg = bg[2]),
27 side = "left", padx = 30)
28 tkpack(tkradiobutton(fr, text = type, relief = type,
29 fg = fg[3], bg = bg[3]),
30 side = "left", padx = 10)
31 tkpack(tkscale(fr, from = 0, to = 10, showvalue = T,
32 variable = 1, resolution = 1,
33 orient = "horizontal",
34 relief = type, fg = fg[4],
35 bg = bg[4]), side = "left", padx = 14)
36

37 tkpack(fr, side = "top", pady = 5)
38 }
39

40 sapply(types, mkframe)

See Fig 11.9.
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Figure 11.9: Standard widget modifications. Relief styles are varied within each widget type,

and background and foreground colors are varied among widget types.

�

11.2.5 Additional tcltk Packages and Toolkits

Several R packages have been developed to streamline and extend the capacities of the tcltk

package. These include fgui (Hoffmann and Laird, 2009) and PBSmodelling (Schnute et al.,

2023, 2013) which provides wrappers for some Tcl/Tk routines to simplify and facilitate GUI

creation. The gWidgets2 package has ambitiously sought to create R simplifying binding

frameworks for several GUI toolkits including GTK, Qt, and Tcl/Tk5. Currently, however, only

the gWidgets2 port for tcltk, called gWidgets2tcltk, is working. The gWidgets2tcltk package

is currently used to build interactive self test questions for the pedagogic statistics package

asbio (Fig 11.10).

asbio::selftest.typeIISS.tck1()

5GTK (formerly GIMP ToolKit), GTK+, and Qt (Section 11.6) are open-source, cross-platform, toolkits for

creating GUIs.
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Figure 11.10: A self-test GUI using the gWidgets2tcltk function gcheckboxgroup. For GUI code
type: fix(selftest.typeIISS.tck1).

A number of Tcl/Tk extensions for R are available from the SciViews family of packages (Gros-

jean, 2024), including svDialogs (an attempt at creating standard cross-platform dialog boxes),

svGUI, and tcltk2. These packages, however, have not been updated (at least on CRAN) for

several years.

11.3 JS and JSON Interactive Apps

Many newer interactive R applications are implemented using bindings for the JavaScript

language6 (JS) or JavaScript Object Notation7 (JSON). GUIs generated from these approaches

are often embedded in an HTML8 format, and thus can be viewed from web browsers.

There aremanyRpackages for generating JS and JSONapps that are rendered inHTML. The two

most popular are plotly and shiny. These packages, and several others are briefly summarized

below. The website https://gallery.htmlwidgets.org/ lists many other amazing R packages

and examples.

• plotly can be used to create a wide variety of interactive HTML/web graphics via the

plotly.js JS library for interactive charts.

• shiny can generate high-quality widget controls that communicate with R in real time

to produce HTML-embedded analytical results and graphics. The package uses other

packages, chiefly htmltools and htmlwidgets, to provide R bindings to JS libraries and

HTML code.

6Java is anOOP language designed to have fewdependencies. Once compiled, Java code can run on all platforms

that support Java. Additional details for Java web design are given here. JavaScript, while linguistically similar to

Java, has many many important differences. For instance, JavaScript is an interpreted language, whereas Java

code is generally compiled.
7JavaScript Object Notation (JSON) was derived from JavaScript largely to facilitate server-to-browser session

communication.
8As noted in Section 2.10.2, HTML (Hypertext Markup Language) is the standard language for structuring

web pages and web content. Basic HTML programming details are available from a number of sources, including

this Mozilla developer site.

https://gallery.htmlwidgets.org/
https://plotly.com/r/
https://shiny.posit.co/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
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• dygraphs is an R interface to the dygraphs JS charting library. It creates high quality

interactive graphs, similar in character to plotly, with an emphasis on time series data.

• leaflet is an R interface to the leaflet JS library for creating interactive maps that allow

zooming and panning.

• highcharter is an R API for Highcharts JS library and its modules. Creates high-quality

interactive graphs similar to those from plotly.

• rbokek is an R interface to the Bokeh Python visualization library, which converts Python

source code and output into a JSON format. The rbokek package can be currently used to

produce interactive graphics similar to those from plotly.

• visNetwork is an R package that binds the vis.js JS library. The provides high-quality

interactives for network graphs and dendritic representations, including classification

trees.

• networkD3 provides R bindings for D3 JS library. Similar to visNetowrk, the package

provides high-quality interactives for network graphs, including tree diagrams.

• rglwidget creates R bindings for the JS library WebGL. The package renders hand-

rotatable three-dimensional rgl graphics (see Section 6.22) in HTML.

I recommend that readers take the time to explore all these packages, many of which require

minimal coding for the generation of GUIs. Because of my own time and space constraints,

however, I will focus only on the plotly and shiny packages over the next two sections of this

Chapter.

11.4 plotly

The package plotly (Sievert, 2020), uses the R package jsonlite, which provides an R binder

for JSON. JSON code is read by the JS library plotly.js to create interactive HTML embedded

graphics (Fig 11.11). Charts resulting from this process are interactive under a standardized

plotly format, although they don’t represent GUIs in a conventional sense.

https://rstudio.github.io/dygraphs/
https://rstudio.github.io/dygraphs/
https://jkunst.com/highcharter/
https://hafen.github.io/rbokeh/
https://bokeh.org/
https://datastorm-open.github.io/visNetwork/
https://visjs.org/
https://christophergandrud.github.io/networkD3/
https://christophergandrud.github.io/networkD3/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
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Figure 11.11: A graph from Sievert (2020) that shows the process of creating an HTML-

embedded plotly chart from a graph generated in R.

Example 11.9.

To provide a simple demonstration I bring in some packages, including plotly, and the

world.emissions data from package asbio.

1 library(tidyverse); library(plotly)
2 library(asbio); data(world.emissions)
3

4 subset <- world.emissions |>
5 filter(country %in% c("United States", "Mexico", "China",
6 "Germany", "Russia", "Canada")) |>
7 filter(year > 1950 & year <= 2019)

Plotly graphs are rendered using the function plot_ly().

8 plot_ly(subset, x = ~year, y = ~co2) |>
9 add_lines(color = ~country) |>

10 layout(
11 yaxis = list(tickfont = list(size = 20),
12 title ='CO\U2082 (million tonnes)',
13 titlefont = list(size = 23)),
14 xaxis = list(tickfont = list(size = 20),
15 title='Year',
16 titlefont = list(size = 23)),
17 legend = list(font = list(size = 20))
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18 )

• On Line 8, I call plot_ly(). Note the use of the tilde operator to call x and y axis variables,
i.e., x = ~year, y = ~co2.

• On Lines 9-18, I call additional plot characteristics using tidyverse pipe operators.

– On Line 9 I use add_lines() to add a line trace to the plot.

– Plot characteristics can be modified in a large number of ways using lists within

the function layout (Lines 10-18).

The result is shown in Fig 11.12. If you are viewing an HTML-rendered version of this book,

the lines in the plot will be interactive, and the graphical device will contain a menu that allows

summarization of single or multiple data points, panning and zooming.

Figure 11.12: Simple plolty chart with an interactive trace and standard plotlymenu shown

(topright).

�
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11.4.1 ggplot and plotly

Ggplot2 objects can be converted (imperfectly) to plotly objects using the function

plolty::ggplotly(). Unfortunately, a large number ggplot layout characteristics including
figure margins and locations of 𝑥 and 𝑦 axis labels will not translate to ggplotly(). Instead,
we must call on potentially exhaustive hierarchically nested list components. This can be a

pain, and it may be expedient to build separate list or function objects to facilitate the process.

Example 11.10.

To illustrate I extend the previous example. First, I create a nested list object, k, that specifies
desired margin and axis characteristics.

1 k <- list(
2 yaxis = list(title = list(font = list(size = 18)),
3 tickfont = list(size = 14)),
4 xaxis = list(title = list(font = list(size = 18)),
5 tickfont = list(size = 15)),
6 margin = list(t = 20, r = 20, b = 80, l = 80))

Here I create a simple ggplot boxplot, g. To get the desired characteristics in the mapped plotly

graph I call on list components in kwithin plotly::layout(). Fig 11.13 shows the result.

7 g <- ggplot(subset, aes(x = country, y = co2)) +
8 geom_boxplot(aes(fill = country)) +
9 theme_classic() +

10 ylab("CO\U2082 (million tonnes)") +
11 xlab("Country")
12

13 ggplotly(g) %>%
14 layout(showlegend = FALSE, xaxis = k$xaxis, yaxis = k$yaxis,
15 margin = k$margin)
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Figure 11.13: Simple plolty barplot, based on a ggplot. Interactive trace for the US shown.

�

Example 11.11.

Here is another application using the function GGally::ggcoef() to create a coefficient plot.
A coefficient plot displays statistical model parameter estimates and confidence intervals. We

can make the plot interactive (in HTML) using ggplotly() (Fig 11.14).

1 library(GGally)
2 model <- lm(log(co2) ~ country + year,
3 data = subset)
4

5 gg <- ggcoef(model,
6 exclude_intercept = TRUE,
7 errorbar_height = .1,
8 color = "blue") +
9 theme_bw()
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10

11 ggplotly(gg) %>%
12 layout(yaxis = list(tickfont = list(size = 15),
13 title ='',
14 titlefont = list(size = 18)),
15 xaxis = list(tickfont = list(size = 15),
16 title='Parameter estimates',
17 titlefont = list(size = 18)),
18 legend = list(font = list(size = 15))
19 )

Figure 11.14: Coefficient plot from the function GGally::ggcoef(), rendered using

ggplotly().

�

11.5 shiny

Probably the easiest and most flexible way to create interactive HTML apps is through tools

in the package shiny. Unlike ploty apps, shiny apps will allow real-time interfacing with R
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for computations. RStudio has internals to facilitate shiny app creation for embedding on

webpages. Examples given here are often based on apps described in Hadley Wickham’s book

Mastering Shiny (Wickham, 2021).

A shiny app will have three components:

• A user interface (ui) specification that defines how your app looks.

• A server function that defines how your app works. The function will (generally) have

three arguments input, output, and session.
• An app execution call that conjoins the user interface and server functions. This is done

with shinyApp()

Example 11.12. As a first example, here is R code for rendering text in an HTML app (Fig

11.15).

1 library(shiny)
2 ui <- fluidPage(
3 "Hello, world!"
4 )
5 server <- function(input, output, session) {
6 }
7 shinyApp(ui, server)

Figure 11.15: A very simple shiny app. Code follows Wickham (2021).

• ui: shiny::fluidPage() is a layout function that defines the basic visual structure of

the app (Lines 1-4). Among other things the function allows definition of app rows using

shiny::fluidRow(), and columns (within rows) using shiny::column(). Fluid pages

can rescale their components in real-time to fill the available GUI window width.

• server: For this simple example the server function contains no commands (Lines 5-6).

Although, as a matter of convention, the server arguments: input, output, session
are still included.

• shinyApp: The app function pairs the ui/server objects (Line 7).

�

One can open anR script with a shiny app skeleton in RStudio by going to File>NewFile>Shiny

Web Application. This will allow RStudio to recognize the script as app code. This, in turn,

allows running the app by either sending its code to the console (e.g., using Ctrl + Enter), or by

using the Run App button in the ShinyWeb Application toolbar.

Example 11.13. Here is a simple app that lists and provides details about datasets in the

package asbio (Fig 11.16).
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1 ui <- fluidPage(
2 selectInput("dataset", label = "Dataset",
3 choices = data(package = "asbio")$results[,3])
4 )
5 server <- function(input, output, session) {
6 }
7 shinyApp(ui, server)

• ui: fluidPage() includes shiny::selectInput(), an input control function that pro-

vides the user with a select box widget. An appropriate label "Dataset" is defined.

Selection box choices are the third column in data(package = "asbio")$results,
which contains the names of the dataframe object names in asbio.

• server: Once again, the server function contains no commands (Lines 5-6).

• shinyApp: The app function again pairs the ui/server objects (Line 7).

Figure 11.16: A shiny app to allow scrolling through asbio datasets.

The app in Fig 11.16 has limited usefulness because it provides only the asbio dataframe

object names. Indeed, we could get more information by simply running data(package =
"asbio"). Here we insert additional features into the user interface and server to increase

functionality (Fig 11.17).

1 adata <- data(package = "asbio")$results[,3]
2 data(list = adata[1:length(adata)]) # loads all asbio datasets
3

4 ui <- fluidPage(
5 selectInput("dataset", label = "Dataset", choices = adata),
6 verbatimTextOutput("summary"),
7 tableOutput("table")
8 )
9

10 server <- function(input, output, session){
11 output$summary <- renderPrint({
12 dataset <- get(input$dataset)
13 summary(dataset)
14 })
15

16 output$table <- renderTable({
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17 dataset <- get(input$dataset)
18 dataset
19 })
20 }
21

22 shinyApp(ui, server)

• The code data(list = adata[1:length(adata)]) loads all the asbio datasets into

the global environment (Line 2).

• ui: fluidPage() now specifies three features, which will occur from top to bottom app,

as they are listed (Lines 4-8).

– The functionsshiny::verbatimTextOutput() (Line6) andshiny::tableOutput()
(Line7) are controls that definehowandwhereoutput (dependingon theorder they

are specified in fluidPage()) are displayed. Specifically, verbatimTextOutput()
displays code, and tableOutput() displays tables.

• server: The server function has been modified to allow interaction with the user

interface (Lines 10-20). It allows generations of two objects: output$summary (Line 11)
and output$table (Line 12), based on input$dataset from the ui.

– output$summary (lines10-14) is a renderedexpression fromshiny::renderPrint().
In particular, this will be output from summary() (Line 13) for columns in

input$dataset which is made available in the object dataset on Line 12. The

output operation is coupled with verbatimTextOutput("summary") in the ui.

– output$table (Lines16-19) is a renderedexpression fromshiny::renderTable().
It will show the raw data in a scrollable table for the dataframe specified in the ui.
This output operation is coupled with tableOutput("table") in the ui.

• shinyApp: As before, we generate the app using: shinyApp(ui, server) (Line 22).



442 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.17: A modified shiny app to provide summaries of scrollable asbio datasets.

�

11.5.1 ui Details

Input widget functions are specified in the ui. A ui input function, e.g., selectInput()with

first argument "foo", or with inputId = "foo" can be called by server operations using

the script input$foo. Most input functions have a 2nd argument called label that creates a
user-readable label for the control widget on the app. A The 3rd input argument is typically

value which creates a starting value for the widget control. Fig 11.18 shows many of the

standard shiny ui input functions (without output). Important ui import functions are also

listed Table 11.1.

source("shiny_widgets.R")
shiny_widgets()
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Figure 11.18: A variety of shiny input widgets and operations that can be spec-

ified in the ui. By row, the figure depicts widgets generated by the functions:

actionButton(), submitButton(), checkboxInput, checkboxGroupInput(),
dateInput(), dateRangeInput(), fileInput(), helpText(), numericInput(),
radioButtons(), selectInput(), sliderInput(), and textInput(). Also see Table

11.1.
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Table 11.1: Some important shiny ui input functions.
Function Purpose

actionButton()
actionLink()

Creates an action button or link.

submitButton() Create a submit button.

checkboxInput() Create a checkbox to specify logical values.

dateInput() Create a selectable calendar.

dateRangeInput() Create a pair of selectable calendars.

fileInput() Create a file upload control to upload one or more files.

helpText()
Create help text which can be added to input

to provide additional information.

numericInput() Create an input control for entry of numeric values

radioButtons() Create a set of radio buttons to select item from a list.

selectInput()
Create a selectable list, from which single or multiple items

can be selected.

sliderInput() Constructs a slider widget to elect a number, date, or date-time.

passwordInput Create an control for entry for passwords.

textInput() Create an input control for unstructured text

11.5.1.1 Output

Output functions in the ui create placeholders that can filled by the server function. As

with inputs, outputs require a unique ID. For instance, in Fig 11.19, which provides a

simple summary of the asbio::world.emissions dataset, output$code and output$text
generated in the server are placed in the fluid page using textOutput("text") and

verbatimTextOutput("code").

1 library(asbio)
2 data(world.emissions)
3

4 US <- world.emissions |>
5 filter(country == "United States")
6

7 ui <- fluidPage(
8 textOutput("text"),
9 verbatimTextOutput("code")

10 )
11 server <- function(input, output, session) {
12 output$text <- renderText({
13 "Summary of the US CO\u2082 data \n"
14 })
15 output$code <- renderPrint({
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16 summary(US$co2)
17 })
18 }
19

20 shinyApp(ui, server)

Figure 11.19: A simple app providing a single descriptive statistics summary.

Table 11.2 lists some potential ui output functions that can be used in shiny apps.

Table 11.2: Some shiny ui output functions.
Function Purpose

downloadButton()
downloadLink()

Create a download button or link.

To be paired with downloadHandler() in server.
htmlOutput()
uiOutput()

Create an HTML output element.

imageOutput()
plotOutput()

Create a plot or image output element.

To be paired with renderPlot() and renderImage(),
respectively, in server.

outputOptions() Set options for an output object.

modalDialog()
modalButton()

Create a modal dialog interface.

showNotification()
removeNotification()

Show or remove a notification.

textOutput()
verbatimTextOutput()

Create a text output element.

To be paired with renderText() and renderPrint(),
respectively, in server.

urlModal() Generate a modal dialog that displays a URL.

11.5.2 server Details

As noted earlier, the server function requires three arguments: input, output, and session.
The input argument allows assembly of items from the ui front-end to create a list-like



446 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

object. The output argument in server provides output for ui inputs, often via rendering

and handling functions (Table 11.3).

Table 11.3: Some shiny server rendering and handling functions.

Function Purpose

downloadHandler()
Create a download button or link.

To be paired with downloadButton() and downloadLink() in ui.

renderPlot()
renderImage()

Create a plot or image output element.

To be paired with imageOutput() and plotOutput(),
respectively, in ui.

renderText()
renderPrint()

Create a text output element.

To be paired with textOutput() and verbatimTextOutput(),
respectively, in ui.

Fig 11.20 shows an appwith sliders inputs, generated using the function sliderInput() in the
ui, and text (product) output which is provided to the ui from the server, via renderText().

1 ui <- fluidPage(
2 sliderInput("x", label = "If x is", min = 1, max = 50, value = 30),
3 sliderInput("y", label = "And y is", min = 1, max = 50, value = 30),
4 "then x times y is",
5 textOutput("product")
6 )
7

8 server <- function(input, output, session) {
9 output$product <- renderText({

10 input$x * input$y
11 })
12 }
13

14 shinyApp(ui, server)
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Figure 11.20: A simple slider app.

11.5.3 Running shiny Apps in R Markdown

Unlike plotly graphics, shiny apps are not automatically interactive in anRmarkdown rendered

document. However, it is easy to a make shiny app interactive in this setting (provided that R

is open to run the app). One simply adds runtime:shiny to the RMarkdown YAML header.

Thus, the YAML header in Rmarkdown should have the format of Fig 11.21. Note that this

approach will now be possible under Bookdown.

Figure 11.21: YAML header to allow inclusion of shiny apps in an R Markdown generated

HTML.

Some adjustments to R and Markdown code may be needed (e.g., figure margins in

renderPlot()may need to be changed) to make apps fit nicely on a page. A shiny app will

only work remotely (outside of an R session) if a server implementing R is used to implement

the app’s code. This process will be detailed at the end of the chapter.
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11.5.4 Reactive Programming

We can increase efficiency in Shiny apps using reactive programming wherein outputs au-

tomatically update as inputs change. Under reactive programming we specify interactive

dependencies so that when an input changes, all related outputs are automatically updated.

The code below results in the app shown in Fig 11.22. Note that the output updates “reactively’ ’

as I type individual characters of my name.

1 ui <- fluidPage(
2 textInput("name", "What's your name?"),
3 textOutput("greeting")
4 )
5

6 server <- function(input, output, session) {
7 output$greeting <- renderText({
8 paste0("Hello ", input$name, "!")
9 })

10 }
11 shinyApp(ui, server)

Figure 11.22: Reactive behavior of a simple shiny app.

Reactive programming usually occurs in more complex settings than the previous example

and requires the function reactive.

Example 11.14.

Asanextendedexample, imaginewewish to rapidly examinegreenhouse emissionsdata for the

fifty countries in the asbio::world.emissions dataset with the highest current populations.
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As a first step, we do some data tidying and create a stats summary callback function we will

use later.

1 library(tidyverse)
2 not.redundant <- world.emissions |> filter(continent != "Redundant")
3

4 pop.max <- not.redundant |>
5 group_by(country) |>
6 summarise(max.pop = max(population)) |>
7 arrange(desc(max.pop))
8

9 # names of 50 largest countries
10 country_names <- setNames(nm = pop.max$country[1:50])
11

12 # 50 largest countries data
13 top50 <- not.redundant |>
14 filter(country %in% pop.max$country[1:50])
15

16 # summary stats
17 summarize <- function(x, rn = c("CO2", "CH4", "NOx", "total GHG")){
18 mean <- apply(x, 2, function(x) mean(x, na.rm = T))
19 max <- apply(x, 2, function(x) max(x, na.rm = T))
20 sum <- apply(x, 2, function(x) sum(x, na.rm = T))
21 n <- apply(x, 2, function(x) length(which(!is.na(x))))
22 df <- data.frame(mean = mean, max = max, cumulative = sum, n = n)
23 row.names(df) <- rn
24 df
25 }

• ui: We define a relatively complex ui that will provide sufficient inputs and outputs for

the server function.

26 ui <- fluidPage(
27 titlePanel(h1("Greenhouse gasses", align = "center")), #h1 = HTML heading
28 fluidRow(
29 column(6,
30 selectInput("country", choices = country_names, label = "Country")
31 )
32 ),
33 fluidRow(
34 column(4, tableOutput("diag")), # table
35 ),
36 br(), # line break
37 br(),
38 fluidRow(
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39 column(12, plotOutput("plot")) # plot
40 )
41 )

• Note that we use the fluidRow() layout function. Shiny app rows, created with

fluidRow(), contain twelve columns. These can be divided up in various ways using

shiny::column()(Fig 11.23).
• The functions htmltools::br() and htmltools::h1() are HTML tags from the pack-

age htmltools, which is imported by shiny. The h1() function creates a first level head-

ing. Thus, it is equivalent to the HTML operator <h1>. The br() functions equates

to an HTML line break tag, i.e., <br>. A list of HTML equivalent tags is provided in

?htmltools::builder.
• The function plotOutput() allows input of interactive R graphs, including ggplots (see

below).

Figure 11.23: Behavior of shiny app rows and columns, in the ui. Figure taken fromWickham

(2021).

• server:: The server function contains several new features, including use of the func-

tion reactive().

42 server <- function(input, output, session) {
43 selected <- reactive(top50 %>% filter(country == input$country))
44

45 output$diag <- renderTable(
46 summarize(select(selected(), co2, methane, nitrous_oxide, total_ghg)),
47 colnames = TRUE, rownames = TRUE
48 )
49

50 output$plot <- renderPlot({
51 selected() %>%
52 ggplot(aes(year, co2)) +
53 geom_line() +
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54 labs(x = "Year",
55 y = expression(paste(CO[2], " emissions (", 10^6, " tonnes)")))
56 })
57 }

• The code:

selected <- reactive(top50 %>% filter(country == input$country))

provides a data subset for a particular country that only needs to be calculated once, and

then re-used. This also allows spontaneous (as possible) interaction with the uiwith respect

to this choice. The reactive object selected is called several times, as a function, in the

server function. - The object output$plot <- renderPlot() will be a ggplot generated

from selected()which will be called by plotOutput("plot") in the ui.

• shinyApp: As before, we generate the app using:

58 shinyApp(ui, server)

The final form of the app is shown in Fig 11.24.

Figure 11.24: A shiny app to graphically depict changing CO2 levels over time for a user-selected

country.

�

Example 11.15.

Wickham (2021) used 𝑡-test computations to demonstrate reactive programming as shown
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(with some modifications) below. We first delineate two callback functions we wish to use in

the app.

1 freqpoly <- function(x1, x2, binwidth = 0.1, xlim = c(-3, 3)) {
2 require(ggplot2)
3 df <- data.frame(
4 x = c(x1, x2),
5 group = c(rep("x1", length(x1)), rep("x2", length(x2)))
6 )
7 ggplot(df, aes(x, colour = group)) +
8 geom_freqpoly(binwidth = binwidth, linewidth = 1) +
9 coord_cartesian(xlim = xlim)

10 }
11

12 t_test <- function(x1, x2) {
13 test <- t.test(x1, x2)
14 sprintf(
15 "p-value: %0.3f \nCI for µ1 - µ2: [%0.2f, %0.2f]",
16 test$p.value, test$conf.int[1], test$conf.int[2]
17 )
18 }

The function t.test() runs 𝑡-tests for true normal population means. In particular, assuming

𝑋1 ∼ 𝑁(𝜇1, 𝜎2
1),𝑋2 ∼ 𝑁(𝜇2, 𝜎2

2)we generally consider the hypotheses:

H0 ∶ 𝜇1 = 𝜇2

HA ∶ 𝜇1 ≠ 𝜇2

By default, t.test() does not assume homoscedasticty (that is, it allows 𝜎2
1 ≠ 𝜎2

2). Thus, it

uses the Satterthwaite method to estimate degrees of freedom for the null 𝑡-distribution of the

test statistic (Aho, 2014). The GUI we will create will run 𝑡-tests on randomly generated data

from two user-specified normal distributions x1 and x2.

The function sprintf() in t_test() uses C code to return a formatted combination of text

and variable outcomes. The code below combines text and inputs for double precision values

(indicated with f) for 𝑝-values, and bounds for a 95% confidence interval for a true mean

difference. The code %0.3f indicates rounding to three significant digits. As before, the code
\n creates a text line break.

• ui: we use the function numericInput() to specify characteristics of the normal distri-

butions under consideration. The sliderInput() function is used to specify x-limits in

app-rendered ggplot frequency plot.
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19 ui <- fluidPage(
20 fluidRow(
21 column(4,
22 "Distribution 1",
23 numericInput("n1", label = "n", value = 200, min = 1),
24 numericInput("mean1", label = "µ", value = 0, step = 0.1),
25 numericInput("sd1", label = "\u03c3", value = 0.5, min = 0.1, step = 0.1)
26 ),
27 column(4,
28 "Distribution 2",
29 numericInput("n2", label = "n", value = 200, min = 1),
30 numericInput("mean2", label = "µ", value = 0, step = 0.1),
31 numericInput("sd2", label = "\u03c3", value = 0.5, min = 0.1, step = 0.1)
32 ),
33 column(4,
34 "Frequency polygon",
35 numericInput("binwidth", label = "Bin width", value = 0.1, step = 0.1),
36 sliderInput("range", label = "range", value = c(-3, 3), min = -5, max = 5)
37 )
38 ),
39 fluidRow(
40 column(12, plotOutput("hist"))
41 ),
42 fluidRow(
43 column(1),
44 column(5, verbatimTextOutput("ttest")),
45 column(2),
46 column(3, actionButton("simulate", "Simulate!")),
47 column(1)
48 )
49 )

• server: In the server we use reactive programming to generate random samples from

a normal distribution. Specifically, for the object x1 we obtain a random sample of

size input$n1 from a normal distribution with a mean of input$mean1 and a standard

deviation of input$sd1. These parameter values are specified in the ui.

50 server <- function(input, output, session) {
51 x1 <- reactive({input$simulate
52 rnorm(input$n1, input$mean1, input$sd1)})
53 x2 <- reactive({input$simulate
54 rnorm(input$n2, input$mean2, input$sd2)})
55

56 output$hist <- renderPlot({
57 freqpoly(x1(), x2(), binwidth = input$binwidth, xlim = input$range)
58 }, res = 96)
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59

60 output$ttest <- renderText({
61 t_test(x1(), x2())
62 })
63 }

- shinyApp: As before, we generate the app using:

64 shinyApp(ui, server)

The final form of the app is shown in Fig 11.25.

Figure 11.25: A shiny app to demonstrate the mechanism of 𝑡-tests.

�

11.5.5 Additional Layout Control

We have already learned about techniques like fluidRow() to control single page layouts in
fluidPage(). Another popular HTML layout uses side panels. These can be implemented in

the shiny ui using the functions sidebarLayout() and sidebarPanel(). Sidebar formatting

is summarized in Fig 11.26.
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Figure 11.26: Sidebar formatting for shiny. Figure taken fromWickham (2021).

Example 11.16.

Here is an example for displaying a normal distribution using sliders in sidebars.

• ui: The user interface specifies a sidebar layout, using sidebarLayout(), that contains
a sidebar panel designated with sidebarPanel, and a main panel, designated with

mainPanel().

1 ui <- fluidPage(
2 titlePanel(h1("Normal Distribution", align = "center")),
3 sidebarLayout(
4 sidebarPanel(
5 sliderInput("mu", "\u03BC", step = 0.2, min = -3,
6 max = 3, value = 0),
7 sliderInput("sigma", "\u03C3", min = 0.5, max = 3,
8 value = 1), width = 4
9 ),

10 mainPanel(plotOutput("plot"))
11 ))

• server: The only output from the server is a base R plot of the normal PDF.

12 server <- function(input, output, session) ({
13 xmin <- -4; xmax <- 4; ymin <- 0; ymax <- 0.8
14 xx <- seq(xmin, xmax, length = 100)
15

16 output$plot <- renderPlot({
17 yy <- dnorm(xx, input$mu, input$sigma)
18 plot(xx, yy, type = "l", xlim = c(xmin, xmax), ylim = c(ymin, ymax),
19 xlab = expression(italic(x)),
20 ylab = expression(paste(italic(f), "(", italic(x), ")", sep = "")),
21 cex.axis = 1.2, cex.lab = 1.2, lwd = 1.4)
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22 })
23 })

} - shinyApp: As before, we use shinyApp() to generate the app.

24 shinyApp(ui, server)

The final form of the app is shown in Fig 11.27.

Figure 11.27: A shiny app for demonstrating the normal distribution.

Notably, the app is less reactive than an analogous normal distribution GUI generated with

tcltk, in the package asbio due to the fact that tcltk GUIs communicate more directly with R.

Compare the app from Fig 11.27 to asbio::see.norm.tck().

�

11.5.5.1 Multi-page Apps

Complex apps may be impossible to fit onto a single page. In shiny, the simplest way to break a

app page into multiple pages is to use tabsetPanel() and tabPanel(). Wickham (2021) that

does not provide widget output because of its empty server (Fig 11.28). In the ui a tabset
panel is generated using tabsetPanel(). This entity has three panels, each is generated using

tabPanel(). Only the first panel "Import data" currently contains content.
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1 ui <- fluidPage(
2 tabsetPanel(
3 tabPanel("Import data",
4 fileInput("file", "Data", buttonLabel = "Upload..."),
5 textInput("delim", "Delimiter", ""),
6 numericInput("skip", "Rows to skip", 0, min = 0),
7 numericInput("rows", "Rows to preview", 10, min = 1)
8 ),
9 tabPanel("Set parameters"),

10 tabPanel("Visualise results")
11 )
12 )
13

14 server <- function(input, output, session) {
15 }
16 shinyApp(ui, server)

Figure 11.28: A shinymultipanel example.

A tabset can be an input when its id argument is used. This allows an app to behave differently

depending on which tab is currently visible (Fig 11.29).
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1 ui <- fluidPage(
2 sidebarLayout(
3 sidebarPanel(
4 textOutput("panel")
5 ),
6 mainPanel(
7 tabsetPanel(
8 id = "tabset",
9 tabPanel("panel 1"),

10 tabPanel("panel 2"),
11 tabPanel("panel 3")
12 )
13 )
14 )
15 )
16 server <- function(input, output, session) {
17 output$panel <- renderText({
18 paste("Current panel: ", input$tabset)
19 })
20 }
21 shinyApp(ui, server)

Figure 11.29: Tabs for a multi-page app.

Because tabs are displayed horizontally, there is a limit to their number. The functions

navlistPanel(), navbarPage(), and navbarMenu() provide vertical layouts that allowmore

tabs with longer titles (Fig 11.30).

1 ui <- fluidPage(
2 navlistPanel(
3 id = "tabset",
4 "Heading 1",
5 tabPanel("panel 1", "Panel one contents"),
6 "Heading 2",
7 tabPanel("panel 2", "Panel two contents"),
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8 tabPanel("panel 3", "Panel three contents")
9 )

10 )
11

12 server <- function(input, output, session) {
13 }
14 shinyApp(ui, server)

Figure 11.30: A multi-page app with vertical tabs.

11.5.5.2 Layout Themes

Customization of the general shiny layout can be obtained by utilizing ormodifyingBootstrap9

themes and classes. These can include layouts specific to mobile apps (see package RInterface)

and Google’s material design frame (see package shinymaterial).

Here we use the "darkly" bootswatch (Fig 11.31). Other choices include "sandstone",
"flatly", and "united".

1 ui <- fluidPage(
2 theme = bslib::bs_theme(bootswatch = "darkly"),
3 sidebarLayout(
4 sidebarPanel(
5 textInput("txt", "Text input:", "text here"),
6 sliderInput("slider", "Slider input:", 1, 100, 30)
7 ),
8 mainPanel(
9 h1(paste0("Theme: darkly")),

10 h2("Header 2"),
11 p("Some text")
12 )
13 )
14 )
15

9Bootstrap is a collection of HTML conventions, Cascading Style Sheets (CSS) styles (CSS is a language used to

style HTML documents, including colors and fonts), and java script snippets bundled into a convenient form.
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16 server <- function(input, output, session) {
17 }
18 shinyApp(ui, server)

Figure 11.31: A shiny app using the darkly bootswatch from Bootstrap.

Further control of shiny apps can be achieved by programming directly in HTML, CSS, and

Java10. In fact, HTML code in uis is revealed by running ui functions directly in the R console

(Fig 11.32).

Figure 11.32: Representation of shiny code as HTML code.

11.5.6 plotOutput Interactives

One of the perks of plotOutput() is that it can be an input that responds to mouse pointer

events. Such controls are also possiblewith tcltk GUIs. A shiny plot can respond to four different

mouse events: click, dblclick (double click), hover (i.e., the mouse stays in the same place),

and brush (a rectangular selection tool).

10For more information, check this R studio help link, and this book by David Granjon

https://shiny.rstudio.com/articles/html-ui.html
https://unleash-shiny.rinterface.com/index.html
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Example 11.17.

Consider the following simple example:

1 US <- world.emissions %>% filter(country == "United States")
2

3 ui <- fluidPage(
4 plotOutput("plot", click = "plot_click"),
5 verbatimTextOutput("info")
6 )
7

8 server <- function(input, output) {
9 output$plot <- renderPlot({

10 par(mar = c(5,5,2,2))
11 plot(US$year, US$co2, xlab = "Year",
12 ylab = expression(paste(CO[2], " (",10^6, " tonnes)")), type = "l")
13 }, res = 96)
14

15 output$info <- renderPrint({
16 req(input$plot_click)
17 x <- round(input$plot_click$x, 2)
18 y <- round(input$plot_click$y, 2)
19 cat("[year = ", x, ", CO2 = ", y, " million tonnes]", sep = "")
20 })
21 }
22 shinyApp(ui, server)

Note the use of req(), to ensure the app doesn’t do anything before the first click. The resulting
app is shown in Fig 11.33.
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Figure 11.33: A mouse interactive shiny app.

Here we use nearPoints() to return a dataframe for a point near a mouse click.

1 US.ghg <- data.frame(US[,c(3,4,10,11,12,14,15)])
2

3 ui <- fluidPage(
4 plotOutput("plot", click = "plot_click"),
5 tableOutput("data")
6 )
7 server <- function(input, output, session) {
8 output$plot <- renderPlot({
9 par(mar = c(5,5,2,2))

10 plot(US.ghg$year, US.ghg$co2, xlab = "Year",
11 ylab = expression(paste(CO[2], " (",10^6, " tonnes)")),
12 type = "l")
13 }, res = 96)
14

15 output$data <- renderTable({
16 nearPoints(US.ghg, input$plot_click,
17 xvar = "year", yvar = "co2")
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18 })
19 }
20 shinyApp(ui, server)

The resulting app is shown in Fig 11.34.

Figure 11.34: Another mouse interactive shiny app.

�

11.5.7 Putting Your App Online

11.5.7.1 Using shinyapps.io

A shiny app will only work remotely (outside of an R session) if a server implementing R is

used to call the app’s code. RStudio helps with this by housing a shiny server site shinyapps.io

(Fig 11.35). The site is currently free of charge for a relatively small number of personal

applications.
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Figure 11.35: The shiny apps website https://www.shinyapps.io/.

My personal shinyapps.io account is shown in Fig 11.36.

Figure 11.36: My personal shiny apps website, with three apps.

The account houses links for some apps summarizing the green house gas data, and the Hardy

Weinberg equilibrium.

11.5.7.2 Using Your own Server

It is also possible to run shiny apps from a server you control11 This will generally be driven at

the Linux command line using website hosting software like nginx12, although file transfers

using Secure SHell (SSH) or File Transfer Protocol (FTP) can be managed using freeware like

https://filezilla-project.org/. Ultimately you will want to use the Shiny Server server program

to run your apps.

11For instance using Amazon Web Services account.
12The website has a nice tutorial about using nginx with Shiny Server.

https://www.shinyapps.io/
https://ahoken.shinyapps.io/Examples_of_Interactives_v1/
https://ahoken.shinyapps.io/seeHW/
https://ahoken.shinyapps.io/seeHW/
https://nginx.org/
https://github.com/rstudio/shiny-server
https://aws.amazon.com/?nc2=h_home&refid=48ebaf74-0ade-44c7-b8c2-12a0e7718d21
https://weihanglo.tw/debian-R-setup/doc/other_nginx.html
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Example 11.18.

Consider a recent consulting project involvingmodels for population dynamics for greater sage

grouse, Centrocercus urophasianus, in south central Idaho (Fig 11.37). I felt that R analyses,

which would be assessed by a large number of individuals with a mixture of backgrounds,

would be best presented as an interactive webpage. I established a Domain Name System (DNS)

with AWS, and installed R, Shiny Server, and necessary R packages into the server.

Figure 11.37: A male greater sage grouse ( extitCentrocercus urophasianus).

Below I gain access to the site directory framework:

1 > ssh ahoken@kenaho.aws.cose.isu.edu
2 ahoken@kenaho.aws.cose.isu.edu's password:
3

4 Welcome to Ubuntu 24.04.2 LTS (GNU/Linux 6.14.0-1010-aws x86_64)
5

6 ahoken@ip-172-31-35-117:/$

• On Line 1, I SSH into the AWS site from PowerShell, and am prompted for a password

(Line 2).

• On Line 4, I am told that the server is run in Linux/Ubuntu and that I am now in Linux.

• On Line 6, I am delivered to the BASH command line prompt, $

Here is the root directory of the site.

ahoken@ip-172-31-35-117:/$ ls

bin boot etc lib lib64 media opt sbin snap sys usr
dev home mnt proc run srv tmp var

Rwas downloaded to etc. The etc directory also contains executables for the server programs

nginx and shiny-server. My personal component of the root directory is home/ahoken/. It
is straightforward to transfer files to and from here. The srv directory only contains the
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shiny-server directory. Looking within shiny-server I have placed an apps folder, and the

file index.html, which provides links to other sites I control:

ahoken@ip-172-31-35-117:/srv/shiny-server$ ls

apps index.html

The apps directory contains files and subdirectories relevant to the grouse project, including

an .Rmd file, Grouse_app.Rmd, that codifies the grouse shiny app analyses.

ahoken@ip-172-31-35-117:/srv/shiny-server/apps$ ls

Grouse_app.Rmd book.bib figs grouse_shapefiles table.csv

The shiny app itself is realized here.

�

11.6 Qt

11.6.1 C++ Calls to R (RInside)

The package RInside (Eddelbuettel et al., 2023b) has been created specifically for the purpose

of allowing C++ executables to call R. For implementing RInside, I strongly recommend use of

BASH shells, which allow straightforward implementation of make and makefile frameworks

(see below). Windows users can install the Windows Subsystem for Linux (WSL) to run Linux-

BASH commands (Section 9.1.5).

library(Rcpp)
library(RInside)

RInside examples make use of make/makefile frameworks. Makefiles control the build process

of a make program, which, in turn, can be used to manage compilation of source code files.

Makefiles use their own declarative programming language to define paths to required header

files (Section 9.3.1.5) and directories, along with other tasks. The make utility can be used

to locate makefiles, specify dependencies among multiple source files, streamline source file

handling (by only recompiling files that need to be updated), andmanage programmatic errors.

Some additional details are provided here. RInside makefiles are generally used to locate

required header files, the R home directory, and the Rcpp and RInside packages.

Example 11.19.

Here is a simple C++ script located in RInside/examples/standard/ that calls R to print

"Hello, world!".

http://kenaho.aws.cose.isu.edu:3838/apps/Grouse_app.Rmd
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.gnu.org/software/make/
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1 #include <RInside.h> // for the embedded R via RInside
2

3 int main(int argc, char *argv[]) {
4 RInside R(argc, argv); // create an embedded R instance
5 R["txt"] = "Hello, world!\n"; // assign a char* (string) to 'txt'
6 R.parseEvalQ("cat(txt)"); // eval init string, ignoring any returns
7 exit(0);
8 }

• On Line 1 the RInside header file RInside.h is called.
• On Line 3 the main function, which serves as the entry point for C++ program execution,

is initiated with integer output.

• On Line 4, an C++ object called R of class RInside is instantiated that has two optional

arguments.

• On Line 5, a variable "txt" is defined in R and is assigned the character string "Hello,
world!". This step occurs inside an R session.

• On Line 6, the R function cat() is applied to the character string. Output from this

operation is “quietly” evaluated with the RInside C++ member function parseEvalQ.
Specifically, parseEvalQ executes R code formatted as a string, and returns the result to

C++.

• On Line 7, an error code of 0 is returned to indicate successful completion of the function.

To compile and run this C++ function (with embedded R code), I open the Ubuntu version of

Linux implemented in WLS, and navigate to the examples/standard directory in RInside at

the BASH command line.

> wsl.exe -d Ubuntu
$ cd /mnt/c/Users/ahoken/AppData/Local/R/win-library/4.3/RInside/examples/standard

Running ls reveals that the current directory contains 19 C++ source files (the script for the

"Hello, world!" app is called rinside_sample0.cpp), a directory named cmake, and two

makefiles (one for Windows). The makefiles query R, Rcpp, and RInside for necessary header

and library resources, and use this information to complete compilation. This is accomplished

using:

$ make rinside_sample0

I get several lines of compiler output that indicate, among other things, that the executable

rinside_sample0 has been created within the current directory. I run the executable by

typing:

$ ./rinside_sample0

And get

https://ubuntu.com/
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Hello, world!

�

11.6.2 Qt apps

Qt (pronounced ‘cute’) is a cross-platform, toolkit for creating GUIs. Among numerous notable

examples, GUIs for Google Earth, Mathematica, and the RStudio Desktop GUI all rely on Qt. Qt

is currently accessible under both commercial and open-source GPL and LGPL licenses. The

proprietary program Qt Creatorr is free to students and teachers, and greatly facilitates the

creation, debugging, andmanagement of Qt apps. Qt scripts generally rely on a C++ framework,

although Qt bindings exist for Python, JavaScript, and C#, among other languages. Qt apps

for R can look great, but can also involve a lot of coding and the management of multiple files

(although this process can be aided by Qt Creatorr and other Qt IDEs). As with Tcl/Tk, better

support (in the form of applications and online help) exists for building Qt GUIs for Python,

than for building Qt GUIs that call R.

Example 11.20.

The RInside package contains an example for the creation of a Qt/C++ GUI executable that can

call R. The GUI is based on a seminal tcltk GUI for demonstrating kernel density estimation

under the R function density() (see Aho (2014)).

Navigating to…RInside/examples/Qt in BASH or Windows shells reveals the presence of

two C++ source files (main.cpp and qtdensity.cpp), a C++ header file (qtdensity.h), a Qt
project file (qtdensity.pro), along with two other other extraneous components: a README
file, and directory called cmake.

$ ls
README cmake main.cpp qtdensity.cpp qtdensity.h qtdensity.pro

Opening qtdensity.pro in Qt Creatorr triggers a series of screens for defining the configura-

tion of a new Qt project. This includes specification for compilers and debuggers (by default

MinGW_64 applications in Windows). This configuration process leads to a project interface

containing the necessary GUI-generating files 11.38 in a tidy format.

https://www.qt.io/
https://www.qt.io/product/development-tools
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Figure 11.38: Qt Creatorr project screen for the RInside app qtdensity.

Pressing the Hammer widget🔨 (lower right corner of Fig 11.38) builds the GUI executable

(Fig 11.39) inside of a new Build subdirectory directory within the…RInside/examples/Qt

project directory.
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Figure 11.39: A slight modified (to decrease fragility) version of the extitRInside extttqtdensity

app.

�

Example 11.21.

The Qt example in RInside is relatively complex. Thus, this example creates a much simpler,

hand-made “Hello, world!”, GUI executable that calls R.

To facilitate this process I use the IDEs and other tools in Qt Creatorr. 1) I first create a

�

11.7 Comparison of GUI-generating Approaches

This chapter detailed four GUI approaches underlain by R or with explicit R interactivity. The

package tcltk uses the Tcl/Tk GUI building tools alongside the native windowing capacities of

Windows, Unix-like, and Mac operating systems. The plotly and shiny libraries render GUIs and

interactive plots under an HTML framework. One can also build Qt GUIs, underlain by C++-

driven executatables that call R. A comparative summary of the four approaches introduced in

this chapter, is given in Table 11.4.
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Table 11.4: Comparison of the three approaches for GUI generation in R introduced in this chapter.

Mechanics Strengths Weaknesses

tcltk
Package provides binding for

Tcl/Tk GUI building tools.

1) Direct interfacing with R

2) Excellent GUI reactivity

3) Wide range of widgets

1) Limited to R environment

2) GUIs may have poor aesthetics

3) Awkward coding frameworks

4) Poor support online or otherwise

plotly

Package provides language

interfacing from R to JSON

to HTML.

1) After generation, does not require R

2) Some built-in ggplot compatibility

1) GUI capabilities limited

to plot interactives

shiny

Language interfacing from R

to JSON to HTML. Maintains

connection to R environment

1) Good support online and

otherwise.

2) High level of RStudio compatibility.

3) Potentially aesthetic GUIs.

4) Straightforward coding

5) Wide range of widgets

1) Requires direct connection to an

R session, or server connection

to an R environment

2) Potentially poor reactivity

Qt
Qt GUIs call R

via C++ executable.

1) Qt Creator faclitates GUI builds.

2) Potentially aesthetic GUIs.

3) Wide range of widgets

1) Requires direct connection to R.

2) Potential GUI fragility

3) Complex coding framework.
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Exercises

1. Make a tcltk GUI that solves and reports the solutions to differential equations.

2. Make a plotly graph of any gglot2 graph using ggplotly.

3. Make a shiny app to greet someone. Hint: place the two code chunks below in the ui
and the server function, respectively.

textInput("name", "What's your name?")

output$greeting <- renderText({paste0("Hello ", input$name)})

Make the app interactive inside an RMarkdown rendered document.

Along with the code, include a snapshot of the app in action.

4. Your friend has designed an app that solves the exponential growth function for a population

with an initial population size of 10, and an intrinsic growth rate of 2, for times, 𝑡, from 1 to 50:

𝑓(𝑡) = 10 × exp(2 × 𝑡).

ui <- fluidPage(
sliderInput("t", label = "If t is", min = 1, max = 50, value = 30),
"then the population size is",
textOutput("exp.growth")

)
server <- function(input, output, session) {

output$exp.growth <- renderText({10 * exp(2 * t)})
}
shinyApp(ui, server)

Does the function generate an error? Why?

Fix the code and provide a snapshot of the app in action.



Chapter 12

R and Your Computer

“Those who can imagine anything, can create the impossible.”

- Alan Turing, (1912–1954)

12.1 How Do Computers Work?

To better understandR, we need to understand the underlying constraints of computer systems

we use to run R. Computers accept data, process data, produce output, and store processed

results. This is generally accomplished through through the generation, integration and storage

of electrical signals at microscopic scales. A list of (current but often changing) computer

hardware terms are given below.

• Power supply: Converts alternating current (AC) electric power to low-voltage direct

current (DC) power.

• Motherboard: A circuit board connecting computer components including the CPU, RAM

and memory disk drives.

• Central Processing Unit (CPU): A microprocessor that performs most of the calculations

that allow a computer to function. Specifically, the CPU processes program instruc-

tions and sends the results on for further processing and execution by other computer

components.

• Graphics Processing Unit (GPU): An electronic circuit originally designed to accelerate

computer graphics, but now widely applied for non-graphic, but highly parallel, calcula-

tions.

• Chipset: Mediates communication between the CPU and the other computer components.

• Random Access Memory (RAM): Stores code and data in primary memory to allow it

to be directly accessed by the CPU. RAM is volatile memory which requires power to

retain stored information. Thus, when power is interrupted, RAM data can be lost. RAM

types include dynamic random access memory (DRAM) and static random-access memory

473
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(SRAM). DRAM constitutes modern computermain memory and graphics cards. DRAM

typically takes the form of an integrated circuit chip that can consist of up to billions of

memory cells, with each cell consisting of a pairing of a tiny capacitor1 and transistor2,

allowing each cell to store or read or write one bit of information (Fig 12.1). SRAM uses

latching circuitry that holds data permanently in the presence of power, whereas DRAM

decays in seconds and must be periodically refreshed. Memory access via SRAM is much

faster than DRAM, although DRAM circuits are much less expensive to construct.

Figure 12.1: Sixteen DRAMmemory cells each representing a bit of information for computa-

tional storage, reading, or writing. To read the binary word line 0101... in row two of the

circuit, binary signals are sent down the bit lines to sense amplifiers.

1A capacitor stores electrical energy by “accumulating electric charges on two closely spaced surfaces that are

insulated from each other” (Wikipedia, 2024c).
2A transistor is a semiconductor device (a material with an intermediate electrical conductivity, e.g., silicon)

that is used to amplify or switch electrical signals and power” (Wikipedia, 2024l).
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• Disk drives: including CD, DVD, hard disk (HDD), and solid state disk (SSD) are used for sec-

ondary memory. That is, memory that is not directly accessible from the CPU. Secondary

memory can be accessed or retrieved even if the computer is off. Secondary memory is

also non-volatile and thus can be used to store data and programs for extended periods.

User files and software (like R) are generally stored on HDDs or SSDs. Flash memory,

which uses modifiedmetal–oxide–semiconductor field-effect transistors (MOSFETs), is

typically used on USB and SSD devices to provide secondary memory that can be erased

and reprogrammed. Flash memory can also be used in RAM applications.

• Read-Only Memory (ROM): Stores the BIOS (see below) that runs when the computer is

powered on (cold boot) or restarted (warm boot or reboot). ROM constitutes primary

memory.

• Basic Input Output System (BIOS): Basic boot (startup) and powermanagement firmware

(software that provides low level control for computer hardware). Newer motherboards

use the so-calledUnified Extensible Firmware Interface (UEFI) to address BIOS limitations,

including restrictive 16 bit addresses.

• Video card: Processes computer graphics.

12.2 Base-2 and Base-10

To understand computer processes, it is important to distinguish base-2 (binary) and base-10

(decimal) numerical systems. In both cases, the base refers to the number of unique digits.

Thus, base-2 systems can have two unique digits, commonly 0 and 1, and the base-10 system

has 10 unique digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The latter –more widely used system– probably

arose because we have ten fingers for counting3. A radix (commonly a decimal symbol) is

used to distinguish the integer part of a number from its fractional part (Fig 12.2). The radix

convention is used by both base-2 and base-10 systems. For example, the decimal number 43
4 ,

has integer component 4 and fractional component 3
4 , can be expressed as 4.75. The binary

equivalent of 43
4 is 100.110.

Traditionally, a base-10 number could only be expressed as a rational fraction whose denomi-

nator was a power of ten (Fig 12.2). However, the decimal system can be extended to any real

number, by allowing a conceptual infinite sequence of digits following the radix (Wikipedia,

2024e).

3A base-20 system used by Pre-Columbian Mesoamerican cultures probably arose because we have twenty

fingers and toes (Wikipedia, 2024e).
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Figure 12.2: A decimal place value chart. A radix (decimal) is placed between the ones and

thenths columns to distinguish decimal number components greater than one (to the left),

and components less than one but greater than zero (to the right).

12.3 Bits and Bytes

Computers are designed around bits and bytes. A bit is a binary (base-2) unit of digital

information. Specifically, a bit will represent a 0 or a 1. This convention occurs because

computer systems typically use electronic circuits that exist in only one of two states, on or

off. For instance, DRAMmemory cells (Fig 12.1) convert electrical low and high voltages into

binary 0 and 1 responses, respectively. These signals allow the reading, writing, and storage of

data. Although bits are used by all software in all conventional computer operating systems,

these mechanisms are easily revealed in R4.

For historical reasons, bits are generally counted in units of bytes. A byte equals eight bits.

Two major systems exist for counting bytes. The decimal method, the most common system,

uses powers of 10, allowing implementation of SI prefixes (i.e., kilo = 103 = 1000, mega = 106
= 10002, giga = 109 = 10003, etc.) (Table 12.1). A computer hard drive with 1 gigabyte (1 billion

bytes) of memory will have 1 × 109 bytes = 8 × 109 bits of memory. The binary system, used

frequently by Windows to describe RAM, defines byte units in multiples of 1012 = 1024.

With a single bit we can describe only 21 = 2 distinct digital objects. These will be an entity

represented by a 0, and an entity represented by a 1. It follows that 22 = 4 distinct objects can
be described with two bits, 23 = 8 entities can be described with three bits, and so on5.

4Non-binary operating systems are rarely implemented because: 1) they are less efficient, and 2) currently

no IEEE standards have been specified. In order of increasing precision and decreasing efficiency, alternative

systems include: Limited-Precision Decimal, Arbitrary-Precision Decimal, and Symbolic Calculation systems.
5For instance, images often contain eight bit (one byte) variables describing the colors red, green, and blue.

Thus, the color red would be a number between 0 and 255 (i.e., red could have 28 = 256 distinct values).

Given that the colors blue and green were also eight bit, there would be 2563 = 16, 777, 216 color possibilities

(combinations) for any pixel in an image.
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Table 12.1: Frequently used byte units.

Decimal Binary

Bytes Name Bytes Name (IEC)

1000 kB (kilobyte) 1024 KiB (kibibyte)

10002 MB (megabyte) 10242 MiB (mebibyte)

10003 GB (gigabyte) 10243 GiB (gibibyte)

10004 TB (terabyte) 10244 TiB (tebibyte)

10005 PB (petabyte) 10245 PeB (pebibyte)

12.4 Decimal to Binary

We count to ten in binary using: 0 = 0, 1 = 1, 10 = 2, 11 = 3, 100 = 4, 101 = 5, 110 = 6, 111 = 7,

1000 = 8, 1001 = 9, and 1010 = 10. Thus, we require four bits to count to ten. Note that the

binary sequences for all positive integers greater than or equal to one, start with one.

12.4.1 Positive Integers

We can obtain the binary expression of the integer part of any decimal number by iteratively

performing integer division by two, and cataloging eachmodulus. The iterations are stopped

when a quotient of one is reached. Themodulus sequence is read from right to left (backwards).

If the whole number of interest is greater than one (i.e., the whole number is not 0 or 1) we

place a one in front of the reversed sequence, because all binary sequences for numbers greater

than or equal to one must start with one.

Example 12.1.

Consider the number 23:

Modulus (remainder) 1 1 1 0
Integer Quotient 23/2 = 11 11/2 = 5 5/2 = 2 2/2 = 1

The reversed sequence is 0111. We place a one in front to get the binary representation for 23:

10111. The function dec2bin() from asbio does the work for us:

library(asbio)
dec2bin(23)

[1] 10111

�
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12.4.2 Positive Fractions

The fractional part of a decimal number can be converted to binary in a similar fashion.

• To identify the fractional expression as a non integer, start the binary sequence with 0.
(a zero followed by a decimal symbol).

• Double the fraction to be converted, and record a 1 if the product is≥ 1, and 0 otherwise.

• For subsequent binary digits, multiply two by the fractional part of the previous multi-

plication. If the product is≥ 1, record a 1. If not, record a 0.

Example 12.2.

Consider the fraction 1
4 . We have:

Binary outcome 0 1
Product 1/4 × 2 = 1/2 < 1 1/2 × 2 = 1 ≥ 1
Binary outcome 0 0
Product 0 × 2 = 0 < 1 0 × 2 = 0 < 1

�

We have a clear repeating sequence of zeroes, due to a product of two in the second step. This

allows us to stop the growth of the binary expression. For fractions, the binary sequence is

read conventionally, from left to right. Thus, the binary expression for 1
4 is 0.01 .

dec2bin(0.25)

[1] 0.01

12.5 Binary to Decimal

The addition of a binary digit (i.e., a bit) represents a doubling of information storage. For in-

stance, as we increase from two bits to three bits, the number of describable integers increases

from four (integers 0 to 3) to eight (integers 0 to 7). As a result we say that the rightmost digit

in a set of binary digits represents 20, the next represents 21, then 22, and so on. This can be

defined with an equation based on Horner’s method (Horner, 1815) that allows conversion of

binary to decimal numbers:

max(𝜅)

∑
𝜅=min(𝜅)

𝛼𝛽𝜅 (12.1)

where 𝛼 is a quantity known as the significand, that contains bit (0, 1) outcomes. For the

purpose of binary expressions, the modifying base, 𝛽, is 2. The term 𝜅 is called (appropriately)

the exponent.
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Themaximumandminimumvalues of𝜅 are determined by counting the number of placeholder

digits in the binary expression represented by the significand, with respect to a binary radix

point (Fig 12.3). Note that counting starts with respect to 0 (the first digit to the left of the

radix) for both positive (bits to the left of the radix) and negative (bits to the right of the radix)

values of the exponent, 𝜅. The radix reference has prompted this method to be called floating

point arithmetic.

Figure 12.3: Conceptualization of binary to decimal conversion, as given in Eq 12.1.

12.5.1 Positive Integers

For positive integers the entirety of the corresponding binomial expression will be to the left

of the radix point (Fig 12.3). Thus, the minimum value of 𝜅 will be zero and the maximum

value of 𝜅will be the number of digits (bits) in the binary expression, minus one.

Equation (12.1) represents a dot product. That is, the equation is a sum of the element-wise

multiplication of two vectors. For instance, to find the integers represented by a single binary

bit, we multiply the binary digit value, 0 or 1, by the power of two it represents. Because the

single bit signature would occur at the right-most address to the left of the radix, the value of

exponent would be 0 (Fig 12.3). That is,min(𝜅) =max(𝜅) = 0 in Eq. (12.1).

If the single bit equals 0we have:

0 × 20 = 0,

and if the single bit equals 1we have:

1 × 20 = 1.

Accordingly, to find the decimal version of a set of binary values, we take the sum of the

products of the binary digits and their corresponding (decreasing) powers of base 2.
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Example 12.3.

For example, the binary number 010101 equals:

(0 × 25) + (1 × 24)+
(0 × 23) + (1 × 22)+
(0 × 21) + (1 × 20) =
0 + 16 + 0 + 4 + 0 + 1 = 21.

The function bin2dec in asbio does the calculation for us.

bin2dec(010101)

[1] 21

�

12.5.2 Positive Fractions

For positive fractions, values of the 𝜅 exponent will decrease by minus one as bits increase

by one (Fig 12.3). Thus, to obtain decimal fractions from binary fractions we multiply a bit’s

binary value by decreasing negative powers of base two, starting at 0, and find the sum, as

shown in Eq (12.1).

Example 12.4.

For example, the binary value 0.01 equals:

(0 × 20) + (0 × 2−1) + (1 × 2−2) = 0.25

bin2dec(0.01)

[1] 0.25

�

12.5.2.1 Terminality

Most decimal fractions will not have a clear terminal binary sequence. That is, a binary

representation of a decimal fraction with a finite number of digits will not exist. This results in

mere binary approximations of decimal numbers (Goldberg, 1991). For instance, the 10 bit

binary expression of 1
10 is

dec2bin(0.1)

[1] 0.0001100110
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But translating this back to decimal we find:

bin2dec(0.0001100110)

[1] 0.0996

We can increase the number of bits in the binary expression,

dec2bin(0.1, max.bits = 14)

[1] 0.00011001100110

This increases precision, but the decimal approximation remains imperfect.

options(digits = 20)
bin2dec(0.00011001100110)

[1] 0.10000000000000000555

Note that these imperfect conversions are the actual results of the division 1
10 for all software

on all current conventional computers (not just R)!

options(digits = 20)
1/10

[1] 0.10000000000000000555

It may seem surprising that rational fractions like 1
10 may have non-terminating binary expres-

sions. Terminality, however, will only occur for a decimal fraction if a product of 2 results from

the successive multiplication steps described in Section 12.4.2. This product does not occur

for 1
10 .

Lack of terminality for binary expressions prompts the need for quantifying imprecision in

computers systems. This can be obtained from Eq (12.1). In particular, the exponent in Eq

(12.1) determines minimum and maximum possible encoded numeric values, and the number

of digits in the significand determines numeric precision. Indeed, by changing the base from 2

to 10, Eq (12.1) can be used to quantify the precision of binary and decimal numbers.

Example 12.5.

The decimal number 1, 245.42 has the scientific notation: 1.24542 × 103. The expression has

a the precision of six digits, because under Eq (12.1) the significand has six digits. Note that

applying these digits in Eq. (12.1) we have:

1 × 103 + 2 × 102 + 4 × 101 + 5 × 100 + 4 × 10−1 + 2 × 10−2 =
1000 + 200 + 40 + 5 + 0.4 + 0.02 = 1245.42

�
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12.6 Double Precision

In most programs, on most workstations, the results of computations are stored as 32 bits

(i.e., 4 bytes) or as 64 bits (8 bytes) of information. The 64 bit double precision format allows

high precision representations of both positive and negative integers and their fractional

components. Under this framework, one bit is allocated to the sign of the stored item, 53 bits

are assigned to the significand, and 11 bits are given to the exponent (Fig 12.4).

Figure 12.4: The IEEE 754 double-precision binary floating-point format Figure taken from

https://commons.wikimedia.org/w/index.php?curid=3595583.

This can be represented mathematically as a more complex form of Eq (12.1):

(−1)sign (1 +
52
∑
𝑖=1

𝑏52−𝑖2−𝑖)× 2𝑒−1023 (12.2)

which gives the assumed numeric value for a 64-bit double-precision datum with exponent

bias.

Example 12.6.

The function bit64() below is taken from the Examples of the documentation for the base

function numToBits(), which converts digital numbers to 64 bits. The function distinguishes:

• The single bit giving the sign of the number (0 = positive, 1 = negative).

• The 11 bit exponent.

• A 52 bit significand (without the implicit leading 1).

bit64 <- function(x)
noquote(vapply(as.double(x),

function(x) {
b <- substr(as.character(rev(numToBits(x))), 2L, 2L)
paste0(c(b[1L], " ", b[2:12], " | ", b[13:64]),

collapse = "")}, "")
)

Here is the double precision representation of 1
3

https://commons.wikimedia.org/w/index.php?curid=3595583
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bit64(1/3)

[1] 0 01111111101 | 0101010101010101010101010101010101010101010101010101

We see this follows the form of Eq (12.2). The exponent 01111111101 represents the decimal

number 1021:

bin2dec(01111111101)

[1] 1021

And one plus the dot product of the significand and base-2 raised to the sequence -1 to -52,

multiplied by 21021−1023, is:

sigd <- strsplit("0101010101010101010101010101010101010101010101010101", NULL)
sigd <- as.numeric(unlist(sigd))
base2 <- 2^(-1:-52)
(1 + sum(sigd * base2)) * 2^-2

[1] 0.3333

That is, we have:

𝑣𝑎𝑙𝑢𝑒 = (−1)sign (1 +
52
∑
𝑖=1

𝑏52−𝑖2−𝑖)× 2𝑒−1023

= −10 × (1 + 2−2 + 2−4 +⋯+ 2−52) × 21021−1023

≈ 1.33 ̄3 × 2−2

≈ 1
3

�

The 11 bit width of the double precision exponent allows the expression of numbers between

10−308 and 10308, with full 15–17 decimal digits precision. This is clearly demonstrated in R.

Specifically, imprecision problems with non-terminal fractions become evident for decimal

numbers with greater than 16 displayed digital digits.

options(digits = 18)
1/3

[1] 0.333333333333333315

Additionally, the current upper numerical limit in R (ver 4.3.2) is somewhere between:

1.8 * 10^307

[1] 1.8e+307
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and

1.8 * 10^308

[1] Inf

The so-called subnormal representation6 compromises precision, but allows allows fractional

representations approaching 5 × 10−324. This approach is used by R, whose smallest repre-

sented fraction is between:

5.0 * 10^-323

[1] 4.94065645841246544e-323

and

5.0 * 10^-324

[1] 0

Binary fractional numbers are expressedwith respect to a decimal, and thenumber of digitswill

(often) be dictated by the significand. Given 13 bits we have the following binary translations

to decimal numbers: 1 = 1/1, 0.1 = 1/2, 0.01010101… = 1/3, 0.01 = 1/4, 0.00110011 = 1/5,

0.0010101… = 1/6, 0.001001… = 1/7, 0.001 = 1/8, 0.000111000111… = 1/9, 0.000110011…
= 1/10.

12.7 Binary Characters

Characters can also be expressed in binary. The American Standard Code for Information

Interchange (ASCII) consists of 128 characters, and requires one byte = eight bits7. The newer

eight bit Unicode Transformation Format (UTF-8) system –the one used by R– can represent

1,112,064 valid code points, using between 1 to 4 bytes = 8 to 32 bits (Wikipedia, 2024n).

Specifically, from the perspective of the UTF-16 system, the UTF-8 system uses portions of

seventeen planes 8, each consisting of sixteen bits (and, thus, 216 = 65, 536 code variants).
This results in the quantity:

(17 × 216) − 211 = 1, 112, 064

The 211 = 2048 subtraction acknowledges that there are 2048 technically-invalid Unicode

6Subnormal numbers fill the underflow gap around zero in floating-point arithmetic (Wikipedia, 2024k). For

subnormal numbers, 𝑒 in Eq:(12.2) is taken to be zero. Underflow occurs when the result of a calculation is a

number with greater precision than the computer can actually represent in its CPU memory (Wikipedia, 2024a).
7Originally developed from telegraph code, ASCII has only 128 code points, of which only 95 are printable

characters (Wikipedia, 2023a).
8In Unicode, a plane is a group of 216 = 65, 536 code points. There are 17 planes because UTF-16, can encode

220 code points (16 planes) as pairs of words, plus the so-called Basic Multilingual Plane (UTF-16 plane 0) as a

single word.

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16#U+D800_to_U+DFFF
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surrogates (Wikipedia, 2024m). The first 128 UTF-8 characters are the ASCII characters,

allowing back-comparability with ASCII.

Example 12.7.

We can observe the process of binary character assignment in R using the functions as.raw(),
rawToChar(), and rawToBits(). The base type raw (Section 2.3.6) is intended to hold raw

byte information. Here is a list of the 128 ASCII characters.

rawToChar(as.raw(1:128), multiple = TRUE)

[1] "\001" "\002" "\003" "\004" "\005" "\006" "\a" "\b" "\t" "\n"
[11] "\v" "\f" "\r" "\016" "\017" "\020" "\021" "\022" "\023" "\024"
[21] "\025" "\026" "\027" "\030" "\031" "\032" "\033" "\034" "\035" "\036"
[31] "\037" " " "!" "\"" "#" "$" "%" "&" "'" "("
[41] ")" "*" "+" "," "-" "." "/" "0" "1" "2"
[51] "3" "4" "5" "6" "7" "8" "9" ":" ";" "<"
[61] "=" ">" "?" "@" "A" "B" "C" "D" "E" "F"
[71] "G" "H" "I" "J" "K" "L" "M" "N" "O" "P"
[81] "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
[91] "[" "\\" "]" "^" "_" "`" "a" "b" "c" "d"
[101] "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
[111] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x"
[121] "y" "z" "{" "|" "}" "~" "\177" "\x80"

Note that the exclamation point is character number 33. Its 16 bit binary code is:

rawToBits(as.raw(33))

[1] 01 00 00 00 00 01 00 00

From the output above, codes 1-31 and 127-128 are not printable characters. Thus, there are

only 128 - 33 = 95 printable ASCII characters. Note that codes 7-13 are command characters.

For instance, character 10, "\n" indicates new line.

�

12.8 Optimizing R

Because attention was given to computational efficiency in several earlier sections in this

chapter, here I briefly consider several methods for optimizing R. In particular, I consider

the use of R-interfaces, including scripting from command line OS shells to implement high

performance computers (HPCs) and parallel computing.

12.8.1 Calling Unix/Linux HPCs

Under construction
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12.8.1.1 Bioinformatics Pipelines

12.8.2 Parallel Computing

Under construction

Exercises

1. Define the following terms:

(a) Motherboard

(b) Central processing unit (CPU)

(c) Random access memory

(d) Primary memory

(e) Secondary memory

(f) Volatile memory

(g) Non-volatile memory

2. Howmany bits are in 5 gigabytes and 6 gibibytes?

3. What is the level of trustworthy precision (in number of digits) for decimal fractional

components in R (and all software that use 64 bit double precision)?

4. Obtain the five bit binary sequence for the number 21 by hand. Check your answer using

dec2bin().

5. Find the decimal number corresponding to the five bit binary sequence 11111. Check
your answer using bin2dec().

6. Find the 64 bit expression for the decimal number −2 (minus 2) using the function

bit64(), as shown in this chapter. Back-transform this binary representation to the

decimal number by hand using Eq. (12.2). Use R functions like strsplit() unlist(),
etc., to help.
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Algol (programming language), 307

American National Standards Institute

(ANSI), 374

API (Application Programming Interface),
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ArcGIS Enterprise, 344

ArcGIS Pro, 344

ASCII (American Standard Code for

Information Interchange), 484

Assembly (programming language), 5

Assignment (programming), 14

B (programming language), 7

BASH (UNIX shell), 348

Basic input output system (BIOS), 475

Bell number, 341

Binary (numerical system), 475

Binary method (digital storage system),

476

Binary operation, 309

Binding (programming), 343, 415, 433

Bioconductor (package repository), 104,

312

Bit (unit of digital information), 476

Bitmap, 181

Boolean (logical), 73, 390

bitwise, 391

Boot (computer startup), 475

Bootstrap (HTML tools), 459

Byte (unit of digital information), 476

Byte Order Mark (BOM), 113

C (programming language), 7, 352, 454

header file

math.h, 361, 400

R.h, 373
classes

Rcomplex, 352
char, 352
double, 352
int, 352

functions

for, 352
C++ (programming language), 357, 372

header file

cmath, 361
Rcpp.h, 364

classes

RInside::RInside, 467
Rcpp::Dataframe, 359
Rcpp::Date, 359
Rcpp::List, 359
Rcpp::Matrix, 359
Rcpp::Rcomplex, 359
Rcpp::S4, 359
Rcpp::String, 359
Rcpp::Vector, 359
bool, 359
double, 359
int, 359
string, 359
time_t, 359
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+, 361
-, 361
*, 361
+=, 366
+, 361
RInside::parseEvalQ, 467
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Rcpp::abs(), 361
Rcpp::asin(), 361
Rcpp::atan(), 361
Rcpp::cbind(), 361
Rcpp::cos(), 361
Rcpp::cumprod(), 361
Rcpp::cumsum(), 361
Rcpp::exp(), 361
Rcpp::get_NA(), 361
Rcpp::is_NA(), 361
Rcpp::is_na(), 361
Rcpp::lapply(), 361
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Rcpp::log(), 361
Rcpp::log10(), 361
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Rcpp::sort(), 361
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Rcpp::tan(), 361
Rcpp::var(), 361
%, 361
cmath::abs(), 361
cmath::asin(), 361
cmath::atan(), 361
cmath::cos(), 361
cmath::exp(), 361
cmath::log(), 361
cmath::log10(), 361
cmath::log2(), 361
cmath::pow(), 361
cmath::round(), 361
cmath::sqrt(), 361

cmath::tan(), 361
for, 359
include, 359
return, 359
Rcpp::fill_diag(), 361

mathematics, 361

ordered maps, 358

standard library, 359

C-obj (programming language), 372

Capacitor, 475

Central processing unit (CPU), 475

Character string, 16, 61, 70, 132, 136, 161

Character vector, 16, 61, 132, 161

Chipset, 475

CLUMPP (bioinformatics software), 344

Command character, 143

\n, 143, 485
\t, 143

Compiled language, 347

Compiler, 347

ILCPU, 347
clisp, 347
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gcc, 347, 354
gfortran, 347, 354

Copy-on-modify (programming), 93

CSS (HTML tools), 44, 459
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(Bgee), 374
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DBMS (Database Management System),
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table, 374

Debian control file, 409

Decimal (numerical system), 475
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Double precision, 22, 62, 482

exponent bias, 482

Double-ended queue (programming), 358,

388



INDEX OF TERMS 499

Dynamic-link library (DLL), 351

End of file (EOF) signal, 110

ESS, 30

European life-sciences infrastructure for

biological information (ELIXIR),

374

Executable file, 347

Exponent (binary expression equation),

478

Expression (programming), 14

F# (programming language), 150, 309

Fastsimcoal (bioinformatics software), 344

Fibonacci sequence, 340, 363

Floating point arithmetic, 479

Fortran (programming language), 5, 352

array, 352

classes

character*255, 352
double complex, 352
double precision, 352
integer, 352

functions

do, 352
Function (computer algorithm), 287

wrapper function, 298

Functional programming, 309

Fuzzy matching, 24

GENEPOP (bioinformatics software), 344

General linear model, 246

Generalized Additive Model (GAM), 246

ggproto, 236

Github (package and code repository), 2,

105, 344

downloading packages from, 304

Global string pool, 101

Global variable, 292

GNU Compiler Collection (GCC), 347, 352,

355

GNU compiler collection (GCC)

attribute, 364

Graphical interactivity, 221

Graphics processing unit (GPU), 475

Grid graphics, 231

Grob (graphical object), 272

GUI (Graphical User Interface)

geometry management, 420

widget, 413

Haskell (programming language), 43, 309

Header file, 364

Hexadecimal, 191

High performance computers (HPCs), 485

HTML, 42, 433

IEEE (Institute of Electrical and Electronics

Engineers), 2, 81, 136, 476

Infix operation, 309

Instance variable (programming), 389

Integrated development environment

(IDE), 11, 28, 30, 40

Intermediate representation

(programming), 347

Interpreted language (programming), 347

Interpreter (programming), 347

Intervallic estimator, 38

Java (programming language), 101, 150,

432

package

RCaller, 345

JavaScript (JS) (programming language),

50, 432

package

D3, 433

DataTable, 50

Highcharter, 433

dygraphs, 433

leaflet, 433

plotly.js, 433

vis.js, 433

JavaScript Open Notatation (JSON)

(programming language), 432

Julia (programming language), 150

Jupyter notebook, 30, 382

LATEX, 42, 139

Lazy loading, 108, 406

Lexical scoping, 292

Linux/Unix (operating system), 11
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fromWindows, 348, 466

Xlib (X11), 415

Lisp (programming language), 3, 5, 101,

309

AutoLISP, 4

Clojure, 4

Common Lisp, 4

Hy, 4

Lisp Flavored Erlang, 4

Local variable, 293

Loop (programming), 227, 276, 277, 304

Lossless, 182

Lossy, 182

LOWESS, 246

Mac (operating system), 11

cocoa, 415

MAFFT (bioinformatics software), 344

make, 466
Makefile, 466

MATLAB, 345

Matrix algebra, 65, 125

Member function, 326, 361, 389, 467

Memory

disk drives, 475

primary memory, 475

random access memory (RAM), 475

read-only memory (ROM), 475

secondary memory, 475

Method chaining, 326

MinGW, 347, 352, 354

MINITAB, 344

Multics, 7

National Center for Biotechnology

Information (NCBI), 374

Object oriented programming, 19

Operator associativity, 33

Operator precedence, 33

Organization for Standardization (ISO), 374

Parellel computing, 486

Perl (programming language), 136

PHASE (bioinformatics software), 344

Pipe (programming), 150, 326

Point estimator

location estimator, 38

sample mean, 38

sample median, 38

order statistic

max, 38

min, 38

scale estimator, 38

sample IQR, 38

sample variance, 38

shape estimator

sample kurtosis, 38

sample skewness, 38

Point estimators, 38

Pointer (programming), 93, 291, 352

Posit (new RStudio name), 40

Posit package manager (package

repository), 105

POSIX (Portable Operating System

Interface), 348, 354

Private fields (programming), 326

Pseudo-random number, 12, 398

Python

classes

deque, 388
dictionary, 387
list, 387
numpy.ndarray, 389
set, 387
tuple, 387

dunder method, 389

functions/operators

** (exponentiation), 392
*, 386
.__abs()__, 390
.__dir()__, 390
.__len()__, 390
.append(), 399
.mean(), 390
.std(), 390
// (integer division), 392
==, 390
>>>, 382
% (modulo), 392
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|, 390
>=, 390
>, 390
<=, 390
<, 390
!=, 390
and, 390
append(), 388
collections.appendleft(), 388
def(), 394
dir(), 390
for(), 399
if(), 384
import(), 385
list(), 387
matplotlib.pyplot.plot(), 386
numpy.array(), 389
numpy.pi(), 386
numpy.sin(), 386
or, 390
os.getcwd(), 396
print(), 384
quit(), 382
random.random(), 399
range(), 386
scipy.integrate.def(), 393
scipy.integrate.quad(), 393
sympy.diff(), 393
sympy.symbols(), 393
time.time(), 399
type(), 387, 395

indentation, 384

magic method, 389

mathematics, 392

package

Bokeh, 433

bokeh, 384

collections, 388

ecologits, 385

matplotlib, 384

numpy, 384

openAI, 385

pandas, 384

random, 399

rpy2, 345

scipy, 384

sympy, 384

time, 399

tkinter, 415, 425

package installer

*conda*, 383

*pip*, 383

conda, 385

pip, 385

pycharm IDE, 382

Python Toolkit IDE, 382

repository

anaconda, 383

PyPI, 383

Spyder IDE, 382

standard library, 384

Qt (software), 466

R

.RData file, 29

.Rdata file, 405

.r file, 30, 406

.rd file, 406

.rda file, 29, 112, 405

.rmd file, 42

.rnw file, 42

NA, 80
NULL, 83
SEXP, 20, 22, 359
REALSXP, 92

STRSXP, 98

VECSXP, 98

NaN, 81
assignment operator, 14

base type, 22, 61

..., 22
NULL, 22, 82, 83
S4, 22, 323, 373
any, 22
builtin, 22, 289
bytecode, 22
character, 22, 61, 132
closure, 22, 289, 373
complex, 22, 63
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double, 22, 62, 67, 352
environment, 18, 22, 291, 326
expression, 22, 35
externalptr, 22
integer, 22, 62, 76, 352
language, 22, 124
list, 22, 70, 241
logical, 22, 61, 74
pairlist, 22, 290
promise, 22, 97, 335
raw, 22, 485
special, 22, 289
symbol, 22, 96, 335
weakref, 22

call stack, 333

character string, 16, 61, 132

character vector, 16, 61, 132, 134

class, 19

classes, 19

array, 19, 67

call, 425

character, 61, 132

complex, 19, 63

data.frame, 19, 68

expression, 35

factor, 19

formula, 124

function, 19, 288

integer, 19, 62

list, 19

matrix, 19, 64

NULL, 82

numeric, 19, 62

POSIXct, 144

POSIXlt, 144

try-error, 422

command line prompt, 11

continuation prompt, 14

CRAN (archive network), 2, 102

Depends field, 331

DESCRIPTION file, 409

development core team, 3

environment, 326

caller environment, 333

current environment, 328

empty environment, 329

execution environment, 293, 328

function environment, 293, 328

global environment, 18, 291, 328

imports environment, 331

namespace environment, 331

package environment, 331

parent environment, 327, 329

function, 16, 287

argument, 16

global variable, 18, 293

graphics, 169

3D plots, 222, 234

animation, 225, 276

barplots, 208, 259

boxplots, 213, 239

coefficient plot, 437

color palettes, 191

colors, 189

dot plots, 171, 257

frequency plots, 257

histograms, 204, 257

interval plots, 216, 261

line plots, 179, 241

maps, 274

mosaic plots, 173

pie charts, 171

scatterplots, 196, 242

smooth scatter plots, 173

spine plots, 173

stem plots, 171

strip charts, 171

sunflower plots, 173

trellis plots, 231, 271

violin plots, 215

graphics devices, 176

history of, 2

internal object, 332

interpreter, 287

introduction to, 1

keyboard shortcut, 26

Lazy evaluation, 335

local variable, 18, 293

mathematics, 31

constants, 34
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derivatives, 34

integrals, 37

statistics, 38

trigonometry, 34

memory limits on datasets, 114

method dispatch, 339

missing data, 81

NAMESPACE file, 410

Non-standard evaluation, 336

object, 14, 19

address, 93, 327

base types, 19

names, 17

package, 2, 101, 403

DBI, 375

DT, 50

Deriv, 37

GGally, 438

KernSmooth, 106

MASS, 106

Matrix, 106

PBSmodelling, 432

PRCE, 142

RColorBrewer, 193, 259

RCytoscape, 344

RInside, 345, 466

RInterface, 459

RMySQL, 375

RSQLite, 375

Rcmdr, 415

Rcpp, 345, 358, 466

SciViews, 432

animation, 227

arcgisbinding, 344

asbio, 108, 203, 212, 216, 315, 333,

415

base, 106, 333

blob, 150

bookdown, 51

boot, 106

car, 108, 227

class, 106

cluster, 106

codetools, 106

coin, 108

colorspace, 195

compiler, 106

cowplot, 257

dartR.pogen, 344

datasets, 106

deSolve, 301

devtools, 305

dplyr, 7, 150, 154

dygraphs, 433

fgui, 432

forcats, 150

foreign, 106

gWidgets2tcltk, 415, 432

gWidgets2, 432

gapminder, 280

gganimate, 278

gginnards, 249

ggplot2, 7, 108, 150, 169, 222, 236

ggpmisc, 247

ggpubr, 265

ggspatial, 274

gifski, 226

glue, 150

grDevices, 106, 169

graphics, 106, 169

gridGraphics, 231

grid, 106, 169, 231

htmltools, 433, 450

htmlwidgets, 433

igraph, 344

inline, 372

kableExtra, 50

knitr, 44, 47

labdsv, 205

lattice, 106, 231

leaflet, 433

lme4, 108

lobstr, 93

lubridate, 150, 163

margrittr, 150, 151

methods, 106

mgcv, 106

missForest, 283

networkD3, 433

nlme, 106, 232
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nnet, 106

parallel, 106

plant.ecol, 305

plotly, 433

plotrix, 108

purrr, 150

rJava, 345

reactable, 50

readr, 150

reshape2, 165

reticulate, 382, 425

rgl, 227

rlang, 93, 327

rmarkdown, 44, 47

rpart, 106

scatterplot3d, 224

sf, 274, 280

shinymaterial, 459

shiny, 433, 439

sloop, 313, 325

spatial, 106

spdep, 108

splines, 106

stats4, 106, 325

stats, 106, 333

strataG, 344

streamDAG, 276, 404

stringr, 150

survival, 106

svDialogs, 432

svGUI, 432

tabular, 106

tcltk2, 432

tcltk, 106, 415

tibble, 150, 153

tidyr, 150

tidyverse, 7, 108, 150

tinytex, 44

tools, 106

tweenr, 280

usethis, 304

utils, 106

vegan, 108, 224

vioplot, 215

visNetwork, 433

xtable, 50

packages

R.oo, 325

R6, 325

proto, 325

pryr, 336

popularity of, 2

R-editor, 30

R-GUI, 11

R-profile, 26

R6 (object type), 325

RC (object type), 325

Rcmd.exe, 351

S3 (object type), 312

S4 (object type), 312

typefaces, 187

vector, 62

vignette, 25

R Journal (the), 415

R Markdown, 345

R-forge (package repository), 105

Radix, 475

RDB (Relational database), 374

RDF (Resource Description Framework),

114

Regular expression, 136

Relational database, 114

RStudio, 40

chunk, 47

project, 42

R Markdown, 42, 139

RStudioGD, 415

Rtools, 352, 354

RWinEdt, 30

S (programming language), 2

SAS, 344

Scheme (programming language), 4, 309

Scope (computer science), 2

Shared library, 351

Significand, 478

Significant indentation, 52, 381

SPSS, 344

SQL (Structured Query Language), 114

Stack overflow, 2
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Stirling partition number, 341

String interning, 101

STRUCTURE (bioinformatics software),

344

Structured Query Language (SQL), 374

functions/operators

ALTER DATABASE, 374
ALTER TABLE, 374
CREATE DATABASE, 374
CREATE TABLE, 374
DELETE, 374
DROP TABLE, 374
INSERT INTO, 374
SELECT, 374
UPDATE, 374
WHERE, 374

MariaDB, 375

Microsoft SQL Server, 374

MySQL, 375

Oracle, 374

SQLite, 375

Subnormal number, 484

Sweave, 42

Tcl (programming language), 415

Tcl/Tk, 415

Terminality (of binary expressions), 481

Tinn-R, 30

Transformation (function), 199, 245

Transistor, 475

Trellis graphics, 231

Underflow (arithmetic), 484

Unicode, 484

Unified extensible firmware interface

(UEFI), 475

UTF-16, 484

UTF-8, 484

Video card, 475

Widget (GUI controller), 413

Windows (operating system)

DPI, 415

Windows Command shell (cmd.exe), 348

commands

cd, 348
cls, 348
dir, 348
drivequery, 348
ipconfig, 348
systeminfo, 348
tasklist, 348

Windows PowerShell, 348

Working directory, 27

YAML, 447

Zenodo (package and code repository), 105
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+, 31
̀, 17
-, 31
*, 31
∧, 31

#, 13
:, 110
::, 104
:::, 104
&, 73
&&, 73, 358
<-, 14
->, 14
<<-, 293, 418
->>, 293
$, 68
==, 73, 358
!=, 73, 358
%*%, 65
%/%, 31
%%, 31, 306
%in%, 131, 310
%o%, 125
<, 73
<=, 73
>, 73
>=, 73
|, 73
||, 73, 358
?, 23
;, 13
[], 84
[[]], 85
tidyverse::. (dot operator), 151

∼, 124

..., 299

.C(), 357

.Call(), 352, 359, 363

.External(), 416

.First(), 27

.Fortran(), 357

.GlobalEnv (global environment), 18, 22,

291

.Last(), 27

.Primitive(), 289

.libPaths(), 102

.packages(), 104
D(), 34
DBI::dbClearResult(), 376
DBI::dbConnect(), 375
DBI::dbFetch(), 376
DBI::dbListTables(), 375
DBI::dbSendQuery(), 376
DBI::dbWriteTable(), 375
Deriv::Deriv(), 37
Deriv::Simplify(), 37
DescTools::StrCountW(), 144
Filter(), 310
Find(), 310
GGally:ggcoef(), 438
IQR(), 39
Inf, 34
Map(), 310
Negate(), 310
Position(), 310
R CMD BATCH, 351, 410
R CMD INSTALL, 351, 410
R CMD REMOVE, 351
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R CMD Rconfig, 351
R CMD Rd2pdf, 351, 408
R CMD Rd2txt, 408
R CMD Rdconv, 408
R CMD Rdiff, 351
R CMD Rprof, 351
R CMD SHLIB, 351, 357, 372
R CMD Stangle, 351
R CMD Sweave, 351
R CMD build, 351, 410
R CMD check, 351, 410
R CMD config, 351
R CMD open, 351
R CMD texify, 351
R6Class(), 326
Rcpp::cppFunction(), 359, 362
Rcpp::evalCpp(), 359
Rcpp::sourceCpp(), 364
Reduce(), 310
Sys.sleep(), 225, 227
Sys.timezone(), 164
Sys.which(), 383
WindowsFonts(), 189
X11(), 176
abline(), 199
abs(), 31
acos(), 34
aggregate(), 123
all(), 77
all.names(), 337
animation::saveGIF(), 227, 277
anova(), 333
any(), 77
apply(), 119, 160
array(), 19, 67
arrows(), 217
as.Date(), 164
as.array(), 78
as.character(), 78
as.double(), 78
as.factor(), 78
as.integer(), 78
as.list(), 78
as.matrix(), 78
as.numeric(), 78

as.raw(), 485
as.vector(), 366
asbio::G.mean(), 39
asbio::H.mean(), 39
asbio::Mode(), 39
asbio::anm.ci.tck(), 418
asbio::bin2dec(), 480
asbio::bplot(), 219
asbio::bplot, 217
asbio::dec2bin(), 346, 477
asbio::dunnettCI(), 333
asbio::kurt(), 39, 295
asbio::lsdCI(), 333
asbio::pairw.anova(), 219, 315, 329,

333

asbio::pairw.fried(), 315
asbio::pairw.oneway(), 315
asbio::skew(), 39, 295
asbio::tukeyCI(), 333
asin(), 34
atan(), 34
attach(), 69
attr(), 64, 74
attributes(), 64
axis(), 186
barplot(), 171, 212, 234
bitmap(), 176
bmp(), 176
body(), 290
bookdown::beamer_presentation2(),

52

bookdown::bs4_book(), 52
bookdown::epub_book(), 52
bookdown::html_book(), 52
bookdown::html_vignette2(), 52
bookdown::ioslides_presentation2(),

52

bookdown::pdf_book(), 52
bookdown::powerpoint_presentation2(),

52

bookdown::slidy_presentation2(), 52
box(), 191, 195
boxplot(), 171, 213
break, 307
browseVignettes(), 25
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c(), 18, 61
cairo_pdf(), 176
cairo_ps(), 176
car::scatter3d(), 227
cat(), 27, 314
cbind(), 66
ceiling(), 31
chol(), 65
choose(), 31
class(), 19, 74
cluster::agnes(), 173
cluster::plot.agnes(), 173
col.names(), 68
colMeans(), 120
colSums(), 120
colorRampPalette(), 195
colors(), 189
colorspace::hclwizard(), 195, 212
complete.cases(), 81
cor(), 39
cos(), 34
cosh(), 34
cov(), 39
cowplot::axis_canvas, 274
cowplot::gg_draw, 274
cowplot::insert_xaxis_grob, 274
cowplot::insert_yaxis_grob, 274
cowplot::plot_grid, 257
cumsum(), 31, 310
data.frame(), 19, 68
date(), 27
deSolve::euler(), 302
deSolve::rk4(), 302
demo(), 24
density(), 468
det(), 65
detach(), 69, 103
dev.cur(), 177
dev.new(), 177, 415
dev.off(), 241
dev.set(), 177
devtools::install_github(), 305
diag(), 91
dim(), 61
do.call(), 72

dotchart(), 171
dplyr::arrange(), 154, 157
dplyr::desc(), 158
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dplyr::filter(), 83, 154, 156
dplyr::group_by(), 154, 155
dplyr::mutate(), 154, 159
dplyr::reframe(), 252
dplyr::select(), 158
dplyr::slice_max(), 158
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dplyr::summarise(), 154, 261
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dyn.load(), 357
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eigen(), 65
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evalq(), 425
example(), 25
exp(), 34, 151
expand.grid(), 190
expression(), 19, 35, 97, 184
facet_grid(), 254
factor(), 19, 74, 166
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file.choose(), 29, 113
file.create(), 27, 353
fix(), 110
floor(), 31
for(), 304
formals(), 17, 290
function(), 19, 27, 38, 287
gWidgets::gcheckboxgroup(), 432
gamma(), 31
get(), 289, 441
getwd(), 27
gginnards::geom_debug(), 249
ggnimate::ease_aes, 280
ggnimate::transition_time, 280
ggplot2::+, 239
ggplot2::%+%, 236
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ggplot2::after_stat, 247
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ggplot2::element_text(), 239
ggplot2::expand_limits(), 276
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ggplot2::facet_wrap(), 254, 272
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ggplot2::geom_crossbar(), 238, 265
ggplot2::geom_curve(), 238
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238

ggplot2::geom_dotplot(), 238, 259
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help(), 23
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history(), 28
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if(), 77
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image(), 234
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install.packages(), 102
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integrate(), 37
interaction(), 76
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is.list(), 74
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is.matrix(), 74
is.na(), 80
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is.null(), 83
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is.primitive(), 289
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isNamespaceLoaded(), 291
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knitr::include_graphics(), 48
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parse(), 422
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plotly::add_lines(), 435
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regmatches(), 137
remove(), 69
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sd(), 39
search(), 331
segments(), 217
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shiny::downloadLink(), 445
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shiny::helpText(), 443
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shiny::radioButtons(), 443
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shiny::removeNotification(), 445
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shiny::textInput(), 443
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shiny::uiOutput(), 445
shiny::urlModal(), 445
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show(), 323
sin(), 34, 152
sinh(), 34
sloop::ftype(), 315
sloop::otype(), 313, 325
sloop::s3_dispatch(), 339
smoothScatter(), 173
solve(), 65
sort(), 128
source(), 30, 189
spineplot(), 173
split(), 83, 289
sprintf(), 454
sqrt(), 31, 333
stack(), 125
stats4::mle(), 325
stem(), 171
stop(), 297, 298
str(), 71
streamDAG::STIC.RFimpute(), 283
streamDAG::arc.pa.from.nodes(), 283
streamDAG::assign_pa_to_segments(),
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streamDAG::streamDAGs(), 283
streamDAG::vector_segments(), 283
stringr::str_extract(), 162
stringr::str_length(), 161
stringr::str_replace(), 162
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stripchart(), 171
strptime(), 144
strsplit(), 132
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substitute(), 97, 337, 426
substr(), 132
sum(), 31, 333
summary(), 109
sunflowerplot(), 173
svd(), 65
svg(), 176
switch(), 296, 322
system.time(), 309, 357
t(), 65
t.test(), 454
tail(), 152
tan(), 34
tanh(), 34
tapply(), 122, 333
tcltk::.Tcl.objv(), 416
tcltk::tcl(), 416
tcltk::tclVar(), 418
tcltk::tclvalue(), 418
tcltk::tkbutton(), 417
tcltk::tkcanvas(), 421
tcltk::tkdestroy(), 417
tcltk::tkentry(), 419
tcltk::tkgrid(), 419, 425
tcltk::tkimage.create(), 428

tcltk::tklabel(), 417
tcltk::tkmessage(), 418
tcltk::tkpack(), 417, 420
tcltk::tkscale(), 426
tcltk::tktoplevel(), 417
tcltk::ttklabel.create(), 428
tcltk::ttkradiobutton(), 428
text(), 182
tibble::as_tibble(), 153
tibble::tibble(), 153
tidyr::gather(), 165
tiff(), 176
tolower(), 144
toupper(), 144
typeof(), 22, 74
unique(), 129
uniroot(), 303
unlist(), 133
unstack(), 125, 212
update.packages(), 103
upper.tri(), 91
var(), 39
vegan::diversity(), 104, 372
vignette(), 25
vioplot::vioplot(), 215
which(), 127
while(), 307
windows(), 176
with(), 69, 302
xfig(), 176
xtable::xtable(), 49
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